Phy5645/Energy conservation: Difference between revisions

From PhyWiki
Jump to navigation Jump to search
Line 26: Line 26:
Using Schrodinger Equations:
Using Schrodinger Equations:
<math>i\hbar\frac{\partial\psi}{\partial t}=-\frac{\hbar^2}{2m}\nabla^2\psi+\nabla\psi</math>,
<math>i\hbar\frac{\partial\psi}{\partial t}=-\frac{\hbar^2}{2m}\nabla^2\psi+\nabla\psi</math>,
<math>-i\hbar\frac{\partial\psi^*}{\partial t}=-\frac{\hbar^2}{2m}\nabla^2\psi^*+\nabla\psi^*</math>,
and, <math>-i\hbar\frac{\partial\psi^*}{\partial t}=-\frac{\hbar^2}{2m}\nabla^2\psi^*+\nabla\psi^*</math>,
 
Also the energy flux density is:
<math>\textbf{S}=-\frac{\hbar^2}{2m}\left(\frac{\partial\psi^*}{\partial t}\nabla\psi + \frac{\partial\psi}{\partial t}\nabla\psi^*\right)</math>,
 
So:<math>\partial W}{\partial t}=-\nabla\cdot\textbf{S}+\frac{\partial\psi^*}{\partial t}\frac{\partial\psi}{\partial t}-\frac{\partial\psi}{\partial t}\frac{\partial\psi^*}{\partial t}=-\nabla\cdot\textbf{S}</math>,
Hence:
<math>\frac{\partial W}{\partial t}+\nabla \cdot \textbf{S}=0</math>

Revision as of 21:24, 9 December 2009

Example 1

Consider a particle moving in a potential field , (1) Prove the average energy equation: , where W is energy density, (2) Prove the energy conservation equation: , where is energy flux density:

Prove:(1): the energy operator in three dimensions is: so the average energy in state is: , Using: , hence: ,

Using Gauss Theorem for the last term: , with the condition: , for infinite surface.

Hence:

(2):first we find the time derivative of energy density: , ,

Using Schrodinger Equations: , and, ,

Also the energy flux density is: ,

So:Failed to parse (syntax error): {\displaystyle \partial W}{\partial t}=-\nabla\cdot\textbf{S}+\frac{\partial\psi^*}{\partial t}\frac{\partial\psi}{\partial t}-\frac{\partial\psi}{\partial t}\frac{\partial\psi^*}{\partial t}=-\nabla\cdot\textbf{S}} , Hence: