A solved problem for spins: Difference between revisions

From PhyWiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
An electron is at rest in an oscillating magnetic field  
Source: Introduction to Quantum Mechanics,D. Griffiths,Problem 4-34.
 
Problem: An electron is at rest in an oscillating magnetic field  


<math>B=B_{0}Cos\left ( \omega t \right )\hat{k}</math>
<math>B=B_{0}Cos\left ( \omega t \right )\hat{k}</math>
Line 51: Line 53:


<math>\dot{\beta }=-i\frac{\mu B_{0}}{2}Cos(\omega t)\beta \Rightarrow \beta (t)=\frac{1}{\sqrt{2}}e^{-i\frac{\mu B_{0}}{2}\frac{Sin(\omega t)}{\omega }}\Rightarrow \chi (t)=\frac{1}{\sqrt{2}}\begin{pmatrix} e^{i\frac{\mu B_{0}}{2}\frac{Sin(\omega t)}{\omega }}\\ e^{-i\frac{\mu B_{0}}{2}\frac{Sin(\omega t)}{\omega }} \end{pmatrix}</math>
<math>\dot{\beta }=-i\frac{\mu B_{0}}{2}Cos(\omega t)\beta \Rightarrow \beta (t)=\frac{1}{\sqrt{2}}e^{-i\frac{\mu B_{0}}{2}\frac{Sin(\omega t)}{\omega }}\Rightarrow \chi (t)=\frac{1}{\sqrt{2}}\begin{pmatrix} e^{i\frac{\mu B_{0}}{2}\frac{Sin(\omega t)}{\omega }}\\ e^{-i\frac{\mu B_{0}}{2}\frac{Sin(\omega t)}{\omega }} \end{pmatrix}</math>
(c)
<math>c_{-}^{(x)}=\chi _{-}^{(x)T}\chi =\frac{1}{2}\begin{pmatrix}
1 & -1
\end{pmatrix}\begin{pmatrix} e^{i\frac{\mu B_{0}}{2}\frac{Sin(\omega t)}{\omega }}\\ e^{-i\frac{\mu B_{0}}{2}\frac{Sin(\omega t)}{\omega }} \end{pmatrix}=\frac{1}{2}[e^{i\frac{\mu B_{0}}{2}\frac{Sin(\omega t)}{\omega }}-e^{-i\frac{\mu B_{0}}{2}\frac{Sin(\omega t)}{\omega }}]=iSin[\frac{\mu B_{0}}{2}\frac{Sin(\omega t)}{\omega }]</math>
<math>P_{-}^{(x)}(t)=\left |c_{-}^{(x)}  \right |^{2}=Sin^{2}(\frac{\mu B_{0}}{2}\frac{Sin(\omega t)}{\omega })</math>
(d)
The argument of <math>Sin^{2}</math> must reach <math>\frac{\pi }{2}</math> (so P=1)<math>\Rightarrow \frac{\mu B_{0}}{2\omega }=\frac{\pi }{2}</math> , or <math>B_{0}=\frac{\pi \omega }{\mu }.</math>

Revision as of 23:21, 21 March 2010

Source: Introduction to Quantum Mechanics,D. Griffiths,Problem 4-34.

Problem: An electron is at rest in an oscillating magnetic field

where and are constants.

(a) Construct the Hamiltonian matrix for this system.

(b) The electron starts out (at t = 0) in the spin-up state with respect to the x-axis [that is,]. Determine at any subsequent time. Beware.' This is a time-dependent Hamiltonian, so you cannot get in the usual way from stationary states. Fortunately, in this case you can solve the time-dependent Schr/Sdinger equation directly.

(c) Find the probability of getting if you measure

(d) What is the minimum field required to force a complete flip in ?

Solution:

(a)

(b)

with

, so


(c)

(d)

The argument of must reach (so P=1) , or