|
|
Line 1: |
Line 1: |
| An electron is at rest in an oscillating magnetic field | | Source: Introduction to Quantum Mechanics,D. Griffiths,Problem 4-34. |
| | |
| | Problem: An electron is at rest in an oscillating magnetic field |
|
| |
|
| <math>B=B_{0}Cos\left ( \omega t \right )\hat{k}</math> | | <math>B=B_{0}Cos\left ( \omega t \right )\hat{k}</math> |
Line 51: |
Line 53: |
|
| |
|
| <math>\dot{\beta }=-i\frac{\mu B_{0}}{2}Cos(\omega t)\beta \Rightarrow \beta (t)=\frac{1}{\sqrt{2}}e^{-i\frac{\mu B_{0}}{2}\frac{Sin(\omega t)}{\omega }}\Rightarrow \chi (t)=\frac{1}{\sqrt{2}}\begin{pmatrix} e^{i\frac{\mu B_{0}}{2}\frac{Sin(\omega t)}{\omega }}\\ e^{-i\frac{\mu B_{0}}{2}\frac{Sin(\omega t)}{\omega }} \end{pmatrix}</math> | | <math>\dot{\beta }=-i\frac{\mu B_{0}}{2}Cos(\omega t)\beta \Rightarrow \beta (t)=\frac{1}{\sqrt{2}}e^{-i\frac{\mu B_{0}}{2}\frac{Sin(\omega t)}{\omega }}\Rightarrow \chi (t)=\frac{1}{\sqrt{2}}\begin{pmatrix} e^{i\frac{\mu B_{0}}{2}\frac{Sin(\omega t)}{\omega }}\\ e^{-i\frac{\mu B_{0}}{2}\frac{Sin(\omega t)}{\omega }} \end{pmatrix}</math> |
| | |
| | (c) |
| | |
| | <math>c_{-}^{(x)}=\chi _{-}^{(x)T}\chi =\frac{1}{2}\begin{pmatrix} |
| | 1 & -1 |
| | \end{pmatrix}\begin{pmatrix} e^{i\frac{\mu B_{0}}{2}\frac{Sin(\omega t)}{\omega }}\\ e^{-i\frac{\mu B_{0}}{2}\frac{Sin(\omega t)}{\omega }} \end{pmatrix}=\frac{1}{2}[e^{i\frac{\mu B_{0}}{2}\frac{Sin(\omega t)}{\omega }}-e^{-i\frac{\mu B_{0}}{2}\frac{Sin(\omega t)}{\omega }}]=iSin[\frac{\mu B_{0}}{2}\frac{Sin(\omega t)}{\omega }]</math> |
| | |
| | <math>P_{-}^{(x)}(t)=\left |c_{-}^{(x)} \right |^{2}=Sin^{2}(\frac{\mu B_{0}}{2}\frac{Sin(\omega t)}{\omega })</math> |
| | |
| | (d) |
| | |
| | The argument of <math>Sin^{2}</math> must reach <math>\frac{\pi }{2}</math> (so P=1)<math>\Rightarrow \frac{\mu B_{0}}{2\omega }=\frac{\pi }{2}</math> , or <math>B_{0}=\frac{\pi \omega }{\mu }.</math> |
Revision as of 23:21, 21 March 2010
Source: Introduction to Quantum Mechanics,D. Griffiths,Problem 4-34.
Problem: An electron is at rest in an oscillating magnetic field
where
and
are constants.
(a) Construct the Hamiltonian matrix for this system.
(b) The electron starts out (at t = 0) in the spin-up state with respect to the x-axis
[that is,
]. Determine
at any subsequent time. Beware.' This
is a time-dependent Hamiltonian, so you cannot get
in the usual way from
stationary states. Fortunately, in this case you can solve the time-dependent
Schr/Sdinger equation directly.
(c) Find the probability of getting
if you measure
(d) What is the minimum field
required to force a complete flip in
?
Solution:
(a)
(b)
with
, so
(c)
(d)
The argument of
must reach
(so P=1)
, or