Phy5646/Simpe Example of Time Dep Pert: Difference between revisions

From PhyWiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 46: Line 46:
   
   
Note the following  
Note the following  
1. As <math> \tau \to \infty P_{1}\to 0</math>. When the electric field is turned on very slowly, then the transition probability goes to zero; that is, the system adjusts adiabatically to the presence of the field, without being "jolted" into making a transition.  
1. As <math> \tau \to \infty P_{1}\to 0</math>. When the electric field is turned on very slowly, then the transition probability goes to zero; that is, the system adjusts adiabatically to the presence of the field, without being "jolted" into making a transition.
2. The potential, through its <math>x</math>-dependence, will allow only certain transitions to take place. In other words, we see that there is a selection rule that operates here. If the potential were proportional to <math>x^{2}</math>, for example, then transitions to <math>n</math> = 2 would be allowed.
2. The potential, through its <math>x</math>-dependence, will allow only certain transitions to take place. In other words, we see that there is a selection rule that operates here. If the potential were proportional to <math>x^{2}</math>, for example, then transitions to <math>n</math> = 2 would be allowed.

Revision as of 05:47, 28 March 2010

This example taken from "Quantum Physics" 3rd ed., Stephen Gasiorowicz, p. 237-238.

Problem: A particle of charge Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q} in a one-dimensional harmonic oscillator of characteristic frequency is placed in an electric field that is turned on and off so that the potential energy is

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lambda V(t) = qExe^{-t^{2}/\tau^{2}}}

If the particle is initially in the ground state, what is the probability that after time Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t} , such that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t >> \tau} , the particle is found in the first excited state of the harmonic oscillator? What is the probability that it is found in the second excited state?

Solution: The harmonic oscillator eigenstates: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |n\rangle} , with eigen-energies Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle h\omega (n + 1/2) } . Then

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \langle n|\psi(t)\rangle = \langle n|0\rangle + \frac{qE}{i\hbar}\int_{-\infty}^{t}dt'e^{\frac{i}{\hbar}(\epsilon_n - \epsilon_0)t'}\langle n|x|0\rangle e^{-t'^{2}/\tau^{2}} }

Since Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \tau >> T} ,we may take the upper and lower limits in the time integral to be Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \pm \infty} . We therefore get

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} \langle n|\psi(t)\rangle & = \frac{qE}{i\hbar}\langle n|x|0\rangle\int_{-\infty}^{\infty}dt'e^{in \omega}e^{-t'^{2}/\tau^{2}}\\ & = \sqrt{\pi}\frac{qE\tau}{i\hbar}\langle n|x|0\rangle e^{-n^{2}\omega^{2}\tau^{2}/4} \end{align} }

Therefore,

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P_{n}=\pi\frac{q^{2}E^{2}\tau^{2}}{\hbar^{2}}|\langle n|x|0\rangle|^{2} e^{-n^{2}\omega^{2}\tau^{2}/2} }

To calculate Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \langle n|x|0\rangle} we use

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x=\sqrt{\frac{\hbar}{2m\omega}}(a+a^{\dagger}) }

and recall that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a|0\rangle = 0} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a^{\dagger}|0\rangle = |1\rangle} . Thus, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |\langle n|x|0\rangle |^{2} = \frac{\hbar}{2m\omega}\delta_{n1} } and therefore

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P_{1}=\frac{\pi}{2}\frac{q^{2}E^{2}\tau^{2}}{m\hbar\omega}e^{-\omega^{2}\tau^{2}/2} }

We also see that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P_n = 0} for Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} = 2, 3, ...

Note the following 1. As Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \tau \to \infty P_{1}\to 0} . When the electric field is turned on very slowly, then the transition probability goes to zero; that is, the system adjusts adiabatically to the presence of the field, without being "jolted" into making a transition.

2. The potential, through its Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x} -dependence, will allow only certain transitions to take place. In other words, we see that there is a selection rule that operates here. If the potential were proportional to Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x^{2}} , for example, then transitions to Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} = 2 would be allowed.