Matrix Elements and the Wigner Eckhart Theorem Example: Difference between revisions

From PhyWiki
Jump to navigation Jump to search
(New page: Let <math> \vec J_1 </math> and <math> \vec J_2 </math> be two angular momentum operators, <math> \vec J = \vec J_1 + \vec J_2 </math> is the sum of these two vectors, and <math> |J M \ran...)
 
mNo edit summary
 
(One intermediate revision by the same user not shown)
Line 1: Line 1:
Let <math> \vec J_1 </math> and <math> \vec J_2 </math> be two angular momentum operators, <math> \vec J = \vec J_1 + \vec J_2 </math> is the sum of these two vectors, and <math> |J M \rangle </math> denotes the eigen states of <math> \vec J^2 </math> and <math> \bold J _z </math>.
Let <math> \vec J_1 </math> and <math> \vec J_2 </math> be two angular momentum operators, <math> \vec J = \vec J_1 + \vec J_2 </math> is the sum of these two vectors, and <math> |J M \rangle </math> denotes the eigen states of <math> \vec J^2 </math> and <math> \bold J _z </math>.
<math> \bold (a) </math> Show that the matrix elements of <math> J_1^- , \langle J M | J_1^- | J' (M + 1)\rangle </math>, vanish, unless <math> \bold J' = \bold J </math> or <math> \bold J' = \bold J \pm 1 </math>.
<math> \bold (b) </math>  Show also that the following expressions are independent of <math> \bold M </math>:

Latest revision as of 21:42, 5 April 2010

Let and be two angular momentum operators, is the sum of these two vectors, and denotes the eigen states of and .

Show that the matrix elements of , vanish, unless or .


Show also that the following expressions are independent of :