Phy5646/Problem on Variational Method: Difference between revisions

From PhyWiki
Jump to navigation Jump to search
No edit summary
(Problem on Variational Method)
 
(3 intermediate revisions by the same user not shown)
Line 1: Line 1:
Consider the one-dimensional potential
Problem:- Consider the one-dimensional potential


<math>\psi (x)=\lambda \frac{x^{4}}{4}+\lambda a\frac{x^{3}}{4}-\lambda \frac{a^{2}x^{2}}{8}</math>
<math>\psi (x)=\lambda \frac{x^{4}}{4}+\lambda a\frac{x^{3}}{4}-\lambda \frac{a^{2}x^{2}}{8}</math>
Line 11: Line 11:
where <math>x_{0}</math> is the global minimum found in (a). Evaluate the expectation value of the energy for this wave function and find the equation defining the optimal values of the parameter β, in order to get an estimate of the ground-state energy. Now take a special, but reasonable, value of the coupling constant, , and obtain the corresponding estimate of the ground-state energy.
where <math>x_{0}</math> is the global minimum found in (a). Evaluate the expectation value of the energy for this wave function and find the equation defining the optimal values of the parameter β, in order to get an estimate of the ground-state energy. Now take a special, but reasonable, value of the coupling constant, , and obtain the corresponding estimate of the ground-state energy.


Solutions:-  
Solution:-  


(a) The classical equilibrium points are the minima of the potential, so that
(a) The classical equilibrium points are the minima of the potential, so that
Line 19: Line 19:
The extrema of the potential are the solutions of
The extrema of the potential are the solutions of


<math>{V}'(x)=\frac{\lambda }{4}(4x^{3}+3ax^{2}-a^{2}x)=\frac{\lambda x}{4}(12x^{2}+6ax-a^{2})</math>
<math>{V}'(x)=\frac{\lambda }{4}(4x^{3}+3ax^{2}-a^{2}x)=\frac{\lambda x}{4}(4x^{2}+3ax-a^{2})=0</math>
 
The second derivative of the potential is


<math>{V}''=\frac{\lambda }{4}(12x^{2}+6ax-a^{2})</math>
<math>{V}''=\frac{\lambda }{4}(12x^{2}+6ax-a^{2})</math>
We obtain a maximum at


<math>x=0, {V}''(0)=-\frac{\lambda a^{2}}{4}< 0</math>
<math>x=0, {V}''(0)=-\frac{\lambda a^{2}}{4}< 0</math>
and two minima at


<math>x_{1}=-a,x_{2}=\frac{a}{4}</math>
<math>x_{1}=-a,x_{2}=\frac{a}{4}</math>
with


<math>{V}''(-a)=\frac{5\lambda a^{2}}{4}> 0,{V}''(\frac{a}{4})=\frac{5\lambda a^{2}}{16}> 0</math>
<math>{V}''(-a)=\frac{5\lambda a^{2}}{4}> 0,{V}''(\frac{a}{4})=\frac{5\lambda a^{2}}{16}> 0</math>
Of these two minima, <math>x_{1}=-a</math> is the global minimum since it corresponds to the lower energy:


<math>V(-a)= -\frac{\lambda a^{4}}{8}< V(\frac{a}{4})=-\frac{3\lambda a^{4}}{4^{5}}</math>
<math>V(-a)= -\frac{\lambda a^{4}}{8}< V(\frac{a}{4})=-\frac{3\lambda a^{4}}{4^{5}}</math>
(b) Consider the trial wave function with <math>x_{0}=-a</math>. The expectation value of the kinetic energy, thanks to translational invariance, does not depend on <math>x_{0}</math>. It is
<math>< T> =-\frac{(\frac{h}{2\pi })^{2}}{2m}\sqrt{\frac{\beta }{\pi }}\int_{-\infty }^{\infty }dxe^{\frac{-\beta x^{2}}{2}}{(e^{\frac{-\beta x^{2}}{2}})}''=\frac{\beta (\frac{h}{2\pi })^{2}}{4m}</math>
The expectation value of the potential is
<math>< V>=\frac{\lambda }{4}\sqrt{\frac{\beta }{\pi }}\int_{-\infty }^{\infty } dxe^{-\beta x^{2}}\left [ (x-a)^{4}+a(x-a)^{3}-\frac{a^{2}}{2}(x-a)^{2} \right ]</math>
<math>=\frac{\lambda }{4}(\frac{3}{4\beta ^{2}}+\frac{5a^{2}}{4\beta }-\frac{a^{4}}{2})</math>
Thus we get,
<math>E(\beta )=\frac{(\frac{h}{2\pi })^2{}}{4ma^{2}}\left [ \beta a^{2}+\bar{\lambda }\left ( \frac{3}{4a^{4}\beta ^{2}}+\frac{5}{4a^{2}\beta }-\frac{1}{2} \right ) \right ]</math>
where we have introduced the dimensionless coupling <math>\bar{\lambda }=\frac{\lambda ma^{6}}{(\frac{h}{2m})^{2}}</math>. Minimizing the energy with respect to <math>\xi =-\beta a^{2}</math>, we get the equation
<math>\xi ^{3}-\frac{3\bar{\lambda }}{2}-\frac{5\bar{\lambda \xi }}{4}=0</math>
For <math>\bar{\lambda }=1</math> there is a special exact solution, namely
<math>\bar{\lambda }=1\Rightarrow \xi _{0}=\frac{3}{2},E_{0}=\frac{(\frac{h}{2m})^{2}}{2ma^{2}}(\frac{13}{12})</math>

Latest revision as of 01:56, 11 April 2010

Problem:- Consider the one-dimensional potential

(a) Find the points of classical equilibrium for a particle of mass m moving under the influence of this potential.

(b) Using the variational method, consider the trial wave function

where is the global minimum found in (a). Evaluate the expectation value of the energy for this wave function and find the equation defining the optimal values of the parameter β, in order to get an estimate of the ground-state energy. Now take a special, but reasonable, value of the coupling constant, , and obtain the corresponding estimate of the ground-state energy.

Solution:-

(a) The classical equilibrium points are the minima of the potential, so that

The extrema of the potential are the solutions of

The second derivative of the potential is

We obtain a maximum at

and two minima at

with

Of these two minima, is the global minimum since it corresponds to the lower energy:

(b) Consider the trial wave function with . The expectation value of the kinetic energy, thanks to translational invariance, does not depend on . It is

The expectation value of the potential is

Thus we get,

where we have introduced the dimensionless coupling . Minimizing the energy with respect to , we get the equation

For there is a special exact solution, namely