DetailedBalance: Difference between revisions

From PhyWiki
Jump to navigation Jump to search
No edit summary
No edit summary
 
(2 intermediate revisions by the same user not shown)
Line 1: Line 1:
Posted by student team #5 (Chelsey Morien, Anthony Kuchera, Jeff Klatsky)
Posted by student team #5 (Anthony Kuchera, Jeff Klatsky, Chelsey Morien)




QUESTION:
QUESTION:


Consider a transition from <math>i \rightarrow f</math> between two states of the nucleus with spins <math>J_i </math> and <math>J_f</math>, respectively. The transition probability is proportional to the squared matrix element <math>|\langle J_f M_f| T_{\lambda \mu}| J_i M_i \rangle|^2</math> where <math>T_{\lambda \mu}</math> is a hermitian tensor operator of rank <math>\lambda</math> responsible for the process. Define the reduced transition probability  
Consider a transition from <math>i \rightarrow f</math> between two states of a nucleus with spins <math>J_i </math> and <math>J_f</math>, respectively. The transition probability is proportional to the squared matrix element <math>|\langle J_f M_f| T_{\lambda \mu}| J_i M_i \rangle|^2</math> where <math>T_{\lambda \mu}</math> is a hermitian tensor operator of rank <math>\lambda</math> responsible for the process. Define the reduced transition probability  


<math>B(T_{\lambda}; i \rightarrow f)=\sum_{\mu M_f}|\langle J_f M_f| T_{\lambda \mu}| J_i M_i \rangle|^2</math>
<math>B(T_{\lambda}; i \rightarrow f)=\sum_{\mu M_f}|\langle J_f M_f| T_{\lambda \mu}| J_i M_i \rangle|^2</math>
Line 47: Line 47:
\end{array} \right)
\end{array} \right)
\left( \begin{array}{lll}
\left( \begin{array}{lll}
j_1 & j_2 & j_3 \\  
j_1 & j_2 & j'_3 \\  
m_1 & m_2 & m_3
m_1 & m_2 & m'_3
\end{array} \right)=\dfrac{\delta_{j_3 j'_3}\delta_{m_3 m'_3}}{2j_3+1}</math>
\end{array} \right)=\dfrac{\delta_{j_3 j'_3}\delta_{m_3 m'_3}}{2j_3+1}</math>



Latest revision as of 16:49, 12 April 2010

Posted by student team #5 (Anthony Kuchera, Jeff Klatsky, Chelsey Morien)


QUESTION:

Consider a transition from Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle i \rightarrow f} between two states of a nucleus with spins Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle J_i } and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle J_f} , respectively. The transition probability is proportional to the squared matrix element Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |\langle J_f M_f| T_{\lambda \mu}| J_i M_i \rangle|^2} where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T_{\lambda \mu}} is a hermitian tensor operator of rank Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lambda} responsible for the process. Define the reduced transition probability

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B(T_{\lambda}; i \rightarrow f)=\sum_{\mu M_f}|\langle J_f M_f| T_{\lambda \mu}| J_i M_i \rangle|^2}

as a sum of squared matrix elements over final projections Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle M_f} and operator projections Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mu} .


a) Express Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B(T_{\lambda}; i \rightarrow f)} in terms of the reduced matrix element Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (f|| T_{\lambda}|| i)} and show that it does not depend on the initial projection Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle M_i} .

b) Establish the detailed balance between the reduced transition probabilities of the direct Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle i \rightarrow f} , and inverse Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f \rightarrow i} processes. Hint: This is just the ratio between Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B(T_{\lambda}; i \rightarrow f)} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B(T_{\lambda}; f \rightarrow i)}


SOLUTION:

a) According to the Wigner-Eckert theorem, the entire dependence of the matrix element of a tensor operator on the magnetic quantum numbers is concentrated in the vector coupling coefficients,


Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \langle J_f M_f| T_{\lambda \mu}| J_i M_i \rangle = (-)^{J_f-M_f} \left( \begin{array}{lll} J_f & \lambda & J_i \\ -M_f & \mu & M_i \end{array} \right) (f|| T_{\lambda}|| i) }

We obtain the rate by squaring this and summing over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mu} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle M_f}


Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B(T_{\lambda}; i \rightarrow f)= (f|| T_{\lambda}|| i)^2 \sum_{\mu M_f} \left( \begin{array}{lll} J_f & \lambda & J_i  \\  -M_f & \mu & M_i \end{array} \right) \left( \begin{array}{lll} J_f & \lambda & J_i  \\  -M_f & \mu & M_i \end{array} \right)}

Using the orthogonality condition: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{m_1 m_2} \left( \begin{array}{lll} j_1 & j_2 & j_3 \\ m_1 & m_2 & m_3 \end{array} \right) \left( \begin{array}{lll} j_1 & j_2 & j'_3 \\ m_1 & m_2 & m'_3 \end{array} \right)=\dfrac{\delta_{j_3 j'_3}\delta_{m_3 m'_3}}{2j_3+1}}


Which leads us to our final result: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B(T_{\lambda}; i \rightarrow f)= \dfrac{(f|| T_{\lambda}|| i)^2}{2J_i+1}}

It is obvious that this result does not depend on Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle M_i}


b) All that is missing to find the detailed balance relation is Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B(T_{\lambda}; f \rightarrow i)} . This is done in the same way as part a).

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B(T_{\lambda}; f \rightarrow i)= (f|| T_{\lambda}|| i)^2 \sum_{\mu M_i} \left( \begin{array}{lll} J_f & \lambda & J_i \\ -M_f & \mu & M_i \end{array} \right) \left( \begin{array}{lll} J_f & \lambda & J_i \\ -M_f & \mu & M_i \end{array} \right)}

Note, the only difference is the sum over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle M_i}

Thus, we have Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B(T_{\lambda}; i \rightarrow f)= \dfrac{(f|| T_{\lambda}|| i)^2}{2J_f+1}}

And the detailed balance relation is: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{B(T_{\lambda}; i \rightarrow f)}{B(T_{\lambda}; f \rightarrow i)}=\frac{2J_f+1}{2J_i+1}}