Chapter4problem: Difference between revisions

From PhyWiki
Jump to navigation Jump to search
(New page: (Problem submitted by team 9, based on problem 7.11 of Griffiths) (a) Using the wave function <math> \psi= \begin{cases} A*cos(\frac{\pi*x}{a}) & \frac{-a}{2}<x<\frac{a}{2} \\ 0 & oth...)
 
No edit summary
 
(11 intermediate revisions by the same user not shown)
Line 1: Line 1:
(Problem submitted by team 9, based on problem 7.11 of Griffiths)
(Problem submitted by team 9, based on problem 7.11 of Griffiths)


(a) Using the wave function  
'''(a)''' Using the wave function  
<math>  \psi=
<math>  \psi=
\begin{cases}  
\begin{cases}  
Line 10: Line 10:
obtain a bound on the ground state energy of the one-dimensional harmonic oscillator. Compare <math> <H>_{min} </math> with the exact energy. Note: This trial wave function has a discontinuous derivative at <math> \frac{\pm a}{2}</math>.
obtain a bound on the ground state energy of the one-dimensional harmonic oscillator. Compare <math> <H>_{min} </math> with the exact energy. Note: This trial wave function has a discontinuous derivative at <math> \frac{\pm a}{2}</math>.


(b) Use <math> \Psi = B*sin(\frac{\pi*x}{a}) </math> on the interval (-a,a) to obtain a bound on the first excited state. Compare to the exact answer.
'''(b)''' Use <math> \Psi = B*sin(\frac{\pi*x}{a}) </math> on the interval (-a,a) to obtain a bound on the first excited state. Compare to the exact answer.
 
'''Solution'''
:'''(a)'''
:<math> 1= \int |\Psi|^2 dx = \int\limits_{-a/2}^{a/2} cos^2(\frac{\pi*x}{a})\, dx = |A|^2*\frac{a}{2} \Rightarrow A=\sqrt(\frac{2}{a}) </math>
 
<math> <T> = -\frac{\hbar^2}{2m} \int \Psi \frac{d^2 \Psi}{dx^2} = \frac{\hbar^2}{2m} (\frac{\pi}{a})^2\int\Psi^2dx = \frac{\pi^2\hbar^2}{2ma^2} </math>
 
<math> <V> = .5m\omega^2\int x^2\Psi^2dx = .5m\omega^2\frac{2}{a}\int\limits_{-a/2}^{a/2}x^2cos^2(\frac{\pi x}{a}dx </math>
<math> = \frac{m\omega^2}{a}(\frac{a}{\pi})^2\int\limits_{-\pi/2}^{\pi/2}y^2cos^2(y)dy </math>
<math> = \frac{m\omega^2a^2}{\pi^3}[\frac{y^3}{6}+(\frac{y^2}{4}-\frac{1}{8})sin(2y)+\frac{ycos(2y)}{4}]_{-a/2}^{a/2} </math>
<math> = \frac{m\omega^2a^2}{4\pi^2}(\frac{\pi^2}{6}-1) </math>
 
<math> <H> = \frac{\pi^2 \hbar^2}{2ma^2} + \frac{m\omega^2a^2}{4\pi^2}(\frac{\pi^2}{6}-1)</math>
:<math> \frac{\partial <H>}{\partial a} = -\frac{\pi^2 \hbar^2}{ma^3} + \frac{m\omega^2a}{2\pi^2}(\frac{\pi^2}{6}-1) =0</math>
: <math> \Rightarrow a=\pi\sqrt{\frac{\hbar}{m\omega}}(\frac{2}{\pi^2/6-1})^{1/4} </math>
 
:<math> <H>_{min}= \frac{\pi^2 \hbar^2}{2m\pi^2}\frac{m\omega}{\hbar}\sqrt{\frac{\pi^2/6-1}{2}} + \frac{m\omega^2}{4\pi^2}(\pi^2/6-1)\pi^2\frac{\hbar}{m\omega}\sqrt{\frac{2}{\pi^2/6-1}}</math>
:<math> = .5\hbar\omega\sqrt{\pi^2/3-2} = .5\hbar\omega(1.136) > .5\hbar\omega </math>
 
We do not need to worry about the discontinuity at <math> \frac{\pm a}{2}</math>. It is true that <math> \frac{d^2 \Psi}{dx^2} </math> has delta functions there, but since <math> \Psi(\frac{\pm a}{2})=0</math> no extra contribution comes from these points.
 
'''(b)'''
Because this trial function is odd, it is orthogonal to the ground state. So, <math> <\Psi|\Psi_{gs}>=0</math>. <math><H>  \ge E_{fe} </math> where <math> E_{fe} </math> is the energy of the first excited state.
 
<math> 1=\int|\Psi|^2dx=|B|^2 \int_{-a}^a sin^2(\frac{\pi x}{a})dx = |B|^2a \Rightarrow B = \frac{1}{\sqrt(a)} </math>
 
<math> <T> = \frac{-\hbar^2}{2m} \int \Psi \frac{d^2 \Psi}{dx^2}dx = \frac{\hbar^2}{2m}\frac{\pi^2}{a^2} \int \Psi^2 dx = \frac{\pi^2 \hbar^2}{2ma^2} </math>
<math> <V> = .5m\omega^2 \int x^2 \Psi^2 dx = .5m\omega^2a^{-1} \int_{-a}^{a} x^2sin^2(\frac{\pi x}{a}) dx = \frac{m\omega^2}{2a}\frac{a^3}{\pi^3} \int_{\pi}^{\pi} y^2 sin^2(y)dy </math>
<math> = \frac{m \omega^2 a^2}{2ma^2} + \frac{m \omega^2 a^2}{4\pi^2}(\frac{2\pi^2}{3}-1)</math> ;<math> \frac{\partial <H>}{\partial a} = \frac{-\pi^2 \hbar^2}{ma^3} + \frac{m \omega^2a}{2\pi^2}(\frac{2 \pi^2}{3}-1)=0 </math>
 
<math>\rightarrow a=\pi \sqrt(\frac{\hbar}{m\omega})(\frac{2}{2\pi^2/3-1})^{1/4}</math>
 
<math> <H_{min}> = \frac{\pi^2 \hbar^2}{2m\pi^2} \frac{m\omega}{\hbar} \sqrt(\frac{2\pi^2 /3-1}{2}) + \frac{m \omega^2}{4\pi^2}(\frac{2\pi^2}{3}-1) \pi^2 \frac{\hbar}{m\omega} \sqrt(\frac{2}{2\pi^2/3-1})</math>
 
<math> = .5 \hbar \omega \sqrt(\frac{4\pi^2}{3}-2) = .5\hbar \omega (3.341) > \frac{3}{2} \hbar \omega </math>

Latest revision as of 20:00, 19 April 2010

(Problem submitted by team 9, based on problem 7.11 of Griffiths)

(a) Using the wave function

obtain a bound on the ground state energy of the one-dimensional harmonic oscillator. Compare with the exact energy. Note: This trial wave function has a discontinuous derivative at .

(b) Use on the interval (-a,a) to obtain a bound on the first excited state. Compare to the exact answer.

Solution

(a)

We do not need to worry about the discontinuity at . It is true that has delta functions there, but since no extra contribution comes from these points.

(b) Because this trial function is odd, it is orthogonal to the ground state. So, . where is the energy of the first excited state.

 ;