Chapter4problem: Difference between revisions

From PhyWiki
Jump to navigation Jump to search
No edit summary
No edit summary
 
(10 intermediate revisions by the same user not shown)
Line 11: Line 11:


'''(b)''' Use <math> \Psi = B*sin(\frac{\pi*x}{a}) </math> on the interval (-a,a) to obtain a bound on the first excited state. Compare to the exact answer.
'''(b)''' Use <math> \Psi = B*sin(\frac{\pi*x}{a}) </math> on the interval (-a,a) to obtain a bound on the first excited state. Compare to the exact answer.
'''Solution'''
:'''(a)'''
:<math> 1= \int |\Psi|^2 dx = \int\limits_{-a/2}^{a/2} cos^2(\frac{\pi*x}{a})\, dx = |A|^2*\frac{a}{2} \Rightarrow A=\sqrt(\frac{2}{a}) </math>
<math> <T> = -\frac{\hbar^2}{2m} \int \Psi \frac{d^2 \Psi}{dx^2} = \frac{\hbar^2}{2m} (\frac{\pi}{a})^2\int\Psi^2dx = \frac{\pi^2\hbar^2}{2ma^2} </math>
<math> <V> = .5m\omega^2\int x^2\Psi^2dx = .5m\omega^2\frac{2}{a}\int\limits_{-a/2}^{a/2}x^2cos^2(\frac{\pi x}{a}dx </math>
<math> = \frac{m\omega^2}{a}(\frac{a}{\pi})^2\int\limits_{-\pi/2}^{\pi/2}y^2cos^2(y)dy </math>
<math> = \frac{m\omega^2a^2}{\pi^3}[\frac{y^3}{6}+(\frac{y^2}{4}-\frac{1}{8})sin(2y)+\frac{ycos(2y)}{4}]_{-a/2}^{a/2} </math>
<math> = \frac{m\omega^2a^2}{4\pi^2}(\frac{\pi^2}{6}-1) </math>
<math> <H> = \frac{\pi^2 \hbar^2}{2ma^2} + \frac{m\omega^2a^2}{4\pi^2}(\frac{\pi^2}{6}-1)</math>
:<math> \frac{\partial <H>}{\partial a} = -\frac{\pi^2 \hbar^2}{ma^3} + \frac{m\omega^2a}{2\pi^2}(\frac{\pi^2}{6}-1) =0</math>
: <math> \Rightarrow a=\pi\sqrt{\frac{\hbar}{m\omega}}(\frac{2}{\pi^2/6-1})^{1/4} </math>
:<math> <H>_{min}= \frac{\pi^2 \hbar^2}{2m\pi^2}\frac{m\omega}{\hbar}\sqrt{\frac{\pi^2/6-1}{2}} + \frac{m\omega^2}{4\pi^2}(\pi^2/6-1)\pi^2\frac{\hbar}{m\omega}\sqrt{\frac{2}{\pi^2/6-1}}</math>
:<math> = .5\hbar\omega\sqrt{\pi^2/3-2} = .5\hbar\omega(1.136) > .5\hbar\omega </math>
We do not need to worry about the discontinuity at <math> \frac{\pm a}{2}</math>. It is true that <math> \frac{d^2 \Psi}{dx^2} </math> has delta functions there, but since <math> \Psi(\frac{\pm a}{2})=0</math> no extra contribution comes from these points.
'''(b)'''
Because this trial function is odd, it is orthogonal to the ground state. So, <math> <\Psi|\Psi_{gs}>=0</math>. <math><H>  \ge E_{fe} </math> where <math> E_{fe} </math> is the energy of the first excited state.
<math> 1=\int|\Psi|^2dx=|B|^2 \int_{-a}^a sin^2(\frac{\pi x}{a})dx = |B|^2a \Rightarrow B = \frac{1}{\sqrt(a)} </math>
<math> <T> = \frac{-\hbar^2}{2m} \int \Psi \frac{d^2 \Psi}{dx^2}dx = \frac{\hbar^2}{2m}\frac{\pi^2}{a^2} \int \Psi^2 dx = \frac{\pi^2 \hbar^2}{2ma^2} </math>
<math> <V> = .5m\omega^2 \int x^2 \Psi^2 dx = .5m\omega^2a^{-1} \int_{-a}^{a} x^2sin^2(\frac{\pi x}{a}) dx = \frac{m\omega^2}{2a}\frac{a^3}{\pi^3} \int_{\pi}^{\pi} y^2 sin^2(y)dy </math>
<math> = \frac{m \omega^2 a^2}{2ma^2} + \frac{m \omega^2 a^2}{4\pi^2}(\frac{2\pi^2}{3}-1)</math> ;<math> \frac{\partial <H>}{\partial a} = \frac{-\pi^2 \hbar^2}{ma^3} + \frac{m \omega^2a}{2\pi^2}(\frac{2 \pi^2}{3}-1)=0 </math>
<math>\rightarrow a=\pi \sqrt(\frac{\hbar}{m\omega})(\frac{2}{2\pi^2/3-1})^{1/4}</math>
<math> <H_{min}> = \frac{\pi^2 \hbar^2}{2m\pi^2} \frac{m\omega}{\hbar} \sqrt(\frac{2\pi^2 /3-1}{2}) + \frac{m \omega^2}{4\pi^2}(\frac{2\pi^2}{3}-1) \pi^2 \frac{\hbar}{m\omega} \sqrt(\frac{2}{2\pi^2/3-1})</math>
<math> = .5 \hbar \omega \sqrt(\frac{4\pi^2}{3}-2) = .5\hbar \omega (3.341) > \frac{3}{2} \hbar \omega </math>

Latest revision as of 20:00, 19 April 2010

(Problem submitted by team 9, based on problem 7.11 of Griffiths)

(a) Using the wave function

obtain a bound on the ground state energy of the one-dimensional harmonic oscillator. Compare with the exact energy. Note: This trial wave function has a discontinuous derivative at .

(b) Use on the interval (-a,a) to obtain a bound on the first excited state. Compare to the exact answer.

Solution

(a)

We do not need to worry about the discontinuity at . It is true that has delta functions there, but since no extra contribution comes from these points.

(b) Because this trial function is odd, it is orthogonal to the ground state. So, . where is the energy of the first excited state.

 ;