Electron on Helium Surface: Difference between revisions
Line 64: | Line 64: | ||
</math> | </math> | ||
This has | This has the same form as the hydrogin atom with l=0 (s-wave). Since similar equations have similar solutions, the solution to the z-component is: | ||
<math> Z(z) = zR_{n0}(z) </math> | <math> Z(z) = zR_{n0}(z) </math> | ||
Line 94: | Line 94: | ||
<math> a_0 = \frac{hbar^2}{mQ^2e^2} </math> | <math> a_0 = \frac{hbar^2}{mQ^2e^2} </math> | ||
(b) Turn on electric field at t=0. | |||
The electric field introduces a perturbation to the hamiltonian: | |||
<math> H^'(t>0) = E_0ze^{t/\tau} </math> |
Revision as of 13:56, 20 April 2010
An electron close to the surface of liquid helium experiences an attractive force due to the electrostatic polarization of the helium and a repulsive force due to the exclusion principle(hard core). To a reasonable approximation for the potential when helium fills the space where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z<0 } :
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V(z) = \begin{cases} -\frac{Q^2e^2}{z} &\mbox{if} \qquad z>0\\ \infty &\mbox{if} \qquad else \end{cases} }
Note: the potential is infinite when Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z<=0} because the cannot penetrate the helium surface.
(a) Solve the Schrödinger equation. Find the Eingenenergies and Eigenvalues.
(b) An electric field is turned on at t=0 which produces the perturbation:
If the electron is initially in its ground state, find the probability makes a transition to its first excited state for times .
Solution...
(a) Solve the Schrödinger equation.
The Schrödinger equation for when is:
Using separation of variables:
For X and Y we get place waves.
This corresponds to motion parallel to the helium surface.
For z-component the Schroedinger equation becomes:
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left[ \frac{\hbar^2}{2m}\frac{\partial ^2}{\partial z^2} - \frac{Q^2e^2}{z} \right] Z(z) = }
This has the same form as the hydrogin atom with l=0 (s-wave). Since similar equations have similar solutions, the solution to the z-component is:
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Z(z) = zR_{n0}(z) }
where
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle R_{10} = \left( \frac{1}{a_0} \right) ^{3/2} z e^{ -\frac{z}{a_0} } }
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle R_{20} = \left( \frac{1}{2a_0} \right) ^{3/2} \left( 2-\frac{z}{a_0} \right) e^{ -\frac{z}{2a_0} } }
The total wave function and energies are:
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \psi = Ae^{i(k_x x + k_y y)}zR_{n0}(z) }
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E_{k_xK_yK_z} = \frac{\hbar^2}{2m} \left( k_x^2 + k_y^2 \right) -\frac{Q^4e^4m}{2\hbar^2n^2} }
where n = 1,2,... is the quantum number for the z-direction and the bohr radius has become
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a_0 = \frac{hbar^2}{mQ^2e^2} }
(b) Turn on electric field at t=0.
The electric field introduces a perturbation to the hamiltonian:
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle H^'(t>0) = E_0ze^{t/\tau} }