Electron on Helium Surface: Difference between revisions
Line 120: | Line 120: | ||
\end{align}</math> | \end{align}</math> | ||
\langle \psi_{n=2}(z) | z | \psi_{n=1}(z) \rangle | <math>\begin{align} | ||
\langle \psi_{n=2}(z) | z | \psi_{n=1}(z) \rangle | |||
&= | &= \langle zR{20} | z | zR_{10} \rangle | ||
\\ | |||
&= \int_{0}^{\infty} dz z^3 e^{ frac{3}{2} frac{z}{a_0} } \left( 2 - \frac{z}{a_0} \right) | |||
\left[ \frac{1}{ \left( \int_{0}^{\infty} dz z^2 e^{\frac{-2z}{a_0}} \right)^{1/2} | |||
\left( \int_{0}^{\infty} dz z^2 \left(2 - \frac{z}{a_0} \right)^2 e^{\frac{-z}{a_0}} \right)^{1/2} | |||
} \right] | |||
\end{align}</math> | \end{align}</math> | ||
where the quantity inside the brackets is the normalization for <math> \psi_1 </math> and <math> \psi_2 </math>, respectively. | |||
let <math> x = \frac{z}{a_0} </math> | |||
<math>\begin{align} | |||
\langle \psi_{n=2}(z) | z | \psi_{n=1}(z) \rangle | |||
&\rightarrow | |||
a_0 \int_{0}^{\infty} dx x^3 e^{ /frac{3}{2} x } \left( 2 - x \right) | |||
\left[ \frac{1}{ \left( \int_{0}^{\infty} dx x^2e^{-2x} \right)^{1/2} | |||
\left( \int_{0}^{\infty} dx x^2 \left( 2 - x \right)^2 e^{ -x } \right)^{1/2} | |||
} \right] | |||
\\ | |||
&= a_0 \frac{32 \sqrt{2}}{81} | |||
\end{align}</math> | |||
So the probablity of a transition from ground state to the first excited state is: | |||
<math> | |||
P_{1 \rightarrow 2} = \frac{e^2E_0^2}{\hbar^2} \frac{1}{ \omega_{21}^2 + \frac{1}{\tau^2} } \frac{2^{11}}{3^{8}} | |||
</math> |
Revision as of 15:42, 20 April 2010
An electron close to the surface of liquid helium experiences an attractive force due to the electrostatic polarization of the helium and a repulsive force due to the exclusion principle(hard core). To a reasonable approximation for the potential when helium fills the space where :
Note: the potential is infinite when because the cannot penetrate the helium surface.
(a) Solve the Schrödinger equation. Find the Eingenenergies and Eigenvalues.
(b) An electric field is turned on at t=0 which produces the perturbation:
If the electron is initially in its ground state, find the probability makes a transition to its first excited state for times .
Solution...
(a) Solve the Schrödinger equation.
The Schrödinger equation for when is:
Using separation of variables:
For X and Y we get place waves.
This corresponds to motion parallel to the helium surface.
For z-component the Schroedinger equation becomes:
This has the same form as the hydrogin atom with l=0 (s-wave). Since similar equations have similar solutions, the solution to the z-component is:
where
The total wave function and energies are:
where n = 1,2,... is the quantum number for the z-direction and the bohr radius has become
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a_0 = \frac{hbar^2}{mQ^2e^2} }
(b) Turn on electric field at t=0.
The electric field introduces a perturbation to the hamiltonian:
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V_t = eE_0ze^{t/\tau} }
From expression 2.1.10 in Time Dependent Perturbation Section of the PHY5646 page:
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} P_{1 \rightarrow 2}(t \rightarrow \infty) &= |\langle n|\psi(t)\rangle|^2 \\ &= \left|\frac{1}{i\hbar}\int_{0}^{\infty}dt' e^{\frac{i}{\hbar}(E_2 - E_1)t'} \langle \psi_{n=2}|V_{t'}| \psi_{n=1}\rangle\right|^2 \\ &= \frac{e^2E_0^2}{\hbar^2} \frac{1}{\omega_{21}^2 + \frac{1}{\tau}} \left| \langle \psi_{n=2}(z) | z | \psi_{n=1}(z) \rangle \right|^2 \end{align}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} \langle \psi_{n=2}(z) | z | \psi_{n=1}(z) \rangle &= \langle zR{20} | z | zR_{10} \rangle \\ &= \int_{0}^{\infty} dz z^3 e^{ frac{3}{2} frac{z}{a_0} } \left( 2 - \frac{z}{a_0} \right) \left[ \frac{1}{ \left( \int_{0}^{\infty} dz z^2 e^{\frac{-2z}{a_0}} \right)^{1/2} \left( \int_{0}^{\infty} dz z^2 \left(2 - \frac{z}{a_0} \right)^2 e^{\frac{-z}{a_0}} \right)^{1/2} } \right] \end{align}}
where the quantity inside the brackets is the normalization for Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \psi_1 } and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \psi_2 } , respectively.
let Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x = \frac{z}{a_0} }
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} \langle \psi_{n=2}(z) | z | \psi_{n=1}(z) \rangle &\rightarrow a_0 \int_{0}^{\infty} dx x^3 e^{ /frac{3}{2} x } \left( 2 - x \right) \left[ \frac{1}{ \left( \int_{0}^{\infty} dx x^2e^{-2x} \right)^{1/2} \left( \int_{0}^{\infty} dx x^2 \left( 2 - x \right)^2 e^{ -x } \right)^{1/2} } \right] \\ &= a_0 \frac{32 \sqrt{2}}{81} \end{align}}
So the probablity of a transition from ground state to the first excited state is:
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P_{1 \rightarrow 2} = \frac{e^2E_0^2}{\hbar^2} \frac{1}{ \omega_{21}^2 + \frac{1}{\tau^2} } \frac{2^{11}}{3^{8}} }