A solved problem for time reversal symmetry: Difference between revisions

From PhyWiki
Jump to navigation Jump to search
(New page: Source: Problem 4-10,'Modern Quantum Mechanics'; J.J. Sakurai '''problem:''' suppose a spinless particle is bound to a fixed center by a potential V(x) so asymmetrical that no energy leve...)
 
No edit summary
 
Line 20: Line 20:
\psi _{n}(x)=\langle\ x|\ n\rangle=\sum_{lm}\langle\ x|\ l,m\rangle\langle\ l,m|\ n\rangle=\sum_{l}\sum_{m}F_{lm}(r)Y_{l}^{m}(\theta ,\varphi )
\psi _{n}(x)=\langle\ x|\ n\rangle=\sum_{lm}\langle\ x|\ l,m\rangle\langle\ l,m|\ n\rangle=\sum_{l}\sum_{m}F_{lm}(r)Y_{l}^{m}(\theta ,\varphi )
</math>
</math>
Also


<math>\psi _{n}(x)=e^{-i\delta }\langle\ x|\ m\rangle=e^{-i\delta }\psi _{n}^{*}(x)=e^{-i\delta }\sum_{m}F_{lm}^{*}(r)Y_{l}^{m}(\theta ,\varphi )=e^{-i\delta }\sum_{m}F_{lm}^{*}(r)(-1)^{m}Y_{l}^{-m}(\theta ,\varphi )=e^{-i\delta }\sum_{m}F_{l,-m}^{*}(r)(-1)^{-m}Y_{l}^{m}(\theta ,\varphi )</math>
<math>\psi _{n}(x)=e^{-i\delta }\langle\ x|\ m\rangle=e^{-i\delta }\psi _{n}^{*}(x)=e^{-i\delta }\sum_{m}F_{lm}^{*}(r)Y_{l}^{m}(\theta ,\varphi )=e^{-i\delta }\sum_{m}F_{lm}^{*}(r)(-1)^{m}Y_{l}^{-m}(\theta ,\varphi )=e^{-i\delta }\sum_{m}F_{l,-m}^{*}(r)(-1)^{-m}Y_{l}^{m}(\theta ,\varphi )</math>

Latest revision as of 20:11, 25 April 2010

Source: Problem 4-10,'Modern Quantum Mechanics'; J.J. Sakurai

problem: suppose a spinless particle is bound to a fixed center by a potential V(x) so asymmetrical that no energy level is degenerate. Using time-reversal invariance prove <L>=o

for any energy eigenstate. (This is known as quenching of orbital angular momentum.) If the wave function of such a non degenerate eigenstate is expanded as

what kind of phase restriction do we obtain on ?

Solution: Under reversal time and , [H,K]=0 Assume where is the eigenket of Hamiltonian. So, is also a eigenket of H with the same eigenvalue.

If we do not have any degeneracy, so

that is a real number.

Also

with comparison two different form of function, we get