Phy5646/AddAngularMomentumProb: Difference between revisions

From PhyWiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 12: Line 12:
<math>\ = \hbar^2 \frac{1}{2}\left(\frac{1}{2}+1 \right)|m_1m_2\rangle + \hbar^2\frac{1}{2}\left(\frac{1}{2}+1\right)|m_1m_2\rangle + 2\hbar^2m_1m_2|m_1m_2\rangle +\hbar^2\sqrt{\frac{1}{2} \left(\frac{1}{2}+1 \right)-m_1 \left(m_1+1 \right)}\sqrt{\frac{1}{2} \left(\frac{1}{2}+1 \right)-m_2 \left(m_1-1 \right)}|m_1+1;m_2-1\rangle</math>  
<math>\ = \hbar^2 \frac{1}{2}\left(\frac{1}{2}+1 \right)|m_1m_2\rangle + \hbar^2\frac{1}{2}\left(\frac{1}{2}+1\right)|m_1m_2\rangle + 2\hbar^2m_1m_2|m_1m_2\rangle +\hbar^2\sqrt{\frac{1}{2} \left(\frac{1}{2}+1 \right)-m_1 \left(m_1+1 \right)}\sqrt{\frac{1}{2} \left(\frac{1}{2}+1 \right)-m_2 \left(m_1-1 \right)}|m_1+1;m_2-1\rangle</math>  
<math>\ +\hbar^2\sqrt{\frac{1}{2} \left(\frac{1}{2}+1 \right)-m_1 \left(m_1-1 \right)}\sqrt{\frac{1}{2} \left(\frac{1}{2}+1 \right)-m_2 \left(m_1+1 \right)}|m_1-1;m_2+1\rangle </math>
<math>\ +\hbar^2\sqrt{\frac{1}{2} \left(\frac{1}{2}+1 \right)-m_1 \left(m_1-1 \right)}\sqrt{\frac{1}{2} \left(\frac{1}{2}+1 \right)-m_2 \left(m_1+1 \right)}|m_1-1;m_2+1\rangle </math>
<math>\ \Rightarrow S^2|m_1m_2\rangle = \hbar^2 \left(\left(\frac{3}{2}+2m_1m_2\right)|m_1m_2\rangle+\sqrt{\left(\frac{3}{2}-m_1(m_1+1)\right)\left(\frac{3}{2}-m_2(m_2-1)\right)}|m_1+1;m_2-1\rangle+\sqrt{\left(\frac{3}{2}-m_1(m_1-1)\right)\left(\frac{3}{2}-m_2(m_2+1)\right)}|m_1-1;m_2+1\rangle\right)</math>
<math>\ \Rightarrow S^2|m_1m_2\rangle = \hbar^2 \left(\left(\frac{3}{2}+2m_1m_2\right)|m_1m_2\rangle+\sqrt{\left(\frac{3}{4}-m_1(m_1+1)\right)\left(\frac{3}{4}-m_2(m_2-1)\right)}|m_1+1;m_2-1\rangle+\sqrt{\left(\frac{3}{4}-m_1(m_1-1)\right)\left(\frac{3}{4}-m_2(m_2+1)\right)}|m_1-1;m_2+1\rangle\right)</math>


3.) Now acting on the left with <math>\ \langle m_1'm_2'| </math>:
3.) Now acting on the left with <math>\ \langle m_1'm_2'| </math>:


<math>\ \langle m_1'm_2'|S^2|m_1m_2\rangle = \hbar^2 \left(\left(\frac{3}{2}+2m_1m_2\right)\delta_{m_1'm_1}\delta_{m_2'm_2}+\sqrt{\left(\frac{3}{2}-m_1(m_1+1)\right)\left(\frac{3}{2}-m_2(m_2-1)\right)}\delta_{m_1'm_1+1}\delta_{m_2'm_2-1}+\sqrt{\left(\frac{3}{2}-m_1(m_1-1)\right)\left(\frac{3}{2}-m_2(m_2+1)\right)}\delta_{m_1'm_1-1}\delta_{m_2'm_2+1}\right)</math>
<math>\ \langle m_1'm_2'|S^2|m_1m_2\rangle = \hbar^2 \left(\left(\frac{3}{2}+2m_1m_2\right)\delta_{m_1'm_1}\delta_{m_2'm_2}+\sqrt{\left(\frac{3}{4}-m_1(m_1+1)\right)\left(\frac{3}{4}-m_2(m_2-1)\right)}\delta_{m_1'm_1+1}\delta_{m_2'm_2-1}+\sqrt{\left(\frac{3}{4}-m_1(m_1-1)\right)\left(\frac{3}{4}-m_2(m_2+1)\right)}\delta_{m_1'm_1-1}\delta_{m_2'm_2+1}\right)</math>


<math>\Rightarrow \langle m_1'm_2'|S^2|m_1m_2\rangle = \hbar^2 \left(\left(\frac{3}{2}+2m_1m_2\right)\delta_{m_1'm_1}\delta_{m_2'm_2}+\sqrt{\left(\frac{3}{2}-m_1m_1'\right)\left(\frac{3}{2}-m_2m_2'\right)}\delta_{m_1'm_1+1}\delta_{m_2'm_2-1}+\sqrt{\left(\frac{3}{2}-m_1m_1'\right)\left(\frac{3}{2}-m_2m_2'\right)}\delta_{m_1'm_1-1}\delta_{m_2'm_2+1}\right)
<math>\Rightarrow \langle m_1'm_2'|S^2|m_1m_2\rangle = \hbar^2 \left(\left(\frac{3}{2}+2m_1m_2\right)\delta_{m_1'm_1}\delta_{m_2'm_2}+\sqrt{\left(\frac{3}{4}-m_1m_1'\right)\left(\frac{3}{4}-m_2m_2'\right)}\left(\delta_{m_1'm_1+1}\delta_{m_2'm_2-1}+\delta_{m_1'm_1-1}\delta_{m_2'm_2+1}\right)\right)
</math>
</math>


3.) Now plugging in appropriate values of <math>\ m_1, m_2, m_1' </math> and <math>\ m_2' </math>:
3.) Now plugging in appropriate values of <math>\ m_1, m_2, m_1' </math> and <math>\ m_2' </math>:


<math>\ \langle 1/2;1/2|S^2|1/2;1/2\rangle = \hbar^2\left(\left(\frac{3}{2}+2\cdot\frac{1}{2}\cdot\frac{1}{2}\right)+0+0\right) = 2\hbar^2</math>
<math>\ \langle 1/2;1/2|S^2|1/2;1/2\rangle = \hbar^2\left(\left(\frac{3}{2}+2\cdot\frac{1}{2}\cdot\frac{1}{2}\right)+0\right) = 2\hbar^2</math>
<math>\ \langle -1/2;-1/2|S^2|-1/2;-1/2\rangle = \hbar^2\left(\left(\frac{3}{2}+2\cdot\frac{-1}{2}\cdot\frac{-1}{2}\right)+0+0\right) = 2\hbar^2</math>


<math> \langle 1/2;-1/2|S^2|1/2;-1/2\rangle = \left(\left(\frac{3}{2}+2\cdot\frac{1}{2}\cdot\frac{-1}{2}\right)+0+0\right) = \hbar^2</math>
<math>\ \langle -1/2;-1/2|S^2|-1/2;-1/2\rangle = \hbar^2\left(\left(\frac{3}{2}+2\cdot\frac{-1}{2}\cdot\frac{-1}{2}\right)+0\right) = 2\hbar^2</math>


<math> \langle -1/2;1/2|S^2|-1/2;1/2\rangle = \left(\left(\frac{3}{2}+2\cdot\frac{-1}{2}\cdot\frac{1}{2}\right)+0+0\right) = \hbar^2</math>
<math> \langle 1/2;-1/2|S^2|1/2;-1/2\rangle = \left(\left(\frac{3}{2}+2\cdot\frac{1}{2}\cdot\frac{-1}{2}\right)+0\right) = \hbar^2</math>


<math> \langle -1/2;1/2|S^2|1/2;1/2\rangle = \langle 1/2;1/2|S^2|-1/2;1/2\rangle = \left(0+0+0\right) = 0</math>
<math> \langle -1/2;1/2|S^2|-1/2;1/2\rangle = \left(\left(\frac{3}{2}+2\cdot\frac{-1}{2}\cdot\frac{1}{2}\right)+0\right) = \hbar^2</math>
 
<math> \langle -1/2;1/2|S^2|1/2;1/2\rangle = \langle 1/2;1/2|S^2|-1/2;1/2\rangle = \left(0+0\right) = 0</math>
 
<math> \langle 1/2;-1/2|S^2|1/2;1/2\rangle = \langle 1/2;1/2|S^2|1/2;-1/2\rangle = \left(0+0\right) = 0</math>
 
<math> \langle -1/2;-1/2|S^2|1/2;1/2\rangle = \langle 1/2;1/2|S^2|-1/2;-1/2\rangle = \left(0+0\right) = 0</math>
 
<math> \langle -1/2;1/2|S^2|1/2;-1/2\rangle = \langle 1/2;-1/2|S^2|-1/2;1/2\rangle = \left(0+\sqrt{\left(\frac{3}{4}-\frac{1}{2}\cdot\frac{-1}{2}\right)\left(\frac{3}{4}-\frac{-1}{2}\cdot\frac{1}{2}\right)}\left(0+1\right)\right) = \hbar^2</math>
 
<math> \langle -1/2;-1/2|S^2|-1/2;1/2\rangle = \langle -1/2;1/2|S^2|-1/2;-1/2\rangle = \left(0+0\right) = 0</math>
 
<math> \langle -1/2;-1/2|S^2|1/2;-1/2\rangle = \langle 1/2;-1/2|S^2|-1/2;-1/2\rangle = \left(0+0\right) = 0</math>





Revision as of 00:16, 26 April 2010

Based on exercise 15.1.1. from Principles of Quantum Mechanics, 2nd ed. by Shankar:

Express as a matrix for two spin-1/2 particles in the direct product basis.

1.) First express in terms of , , , , and :

2.) Then act with this on direct product state :

3.) Now acting on the left with :

3.) Now plugging in appropriate values of and :


</math>