Phy5646/Grp3SpinProb: Difference between revisions
Jump to navigation
Jump to search
EricCoulter (talk | contribs) (First Part of Worked Problem.) |
|||
(5 intermediate revisions by one other user not shown) | |||
Line 31: | Line 31: | ||
Which means that: | Which means that: | ||
<math> \chi_+ = \left( \begin{array}{c} \cos(\frac{\theta}{2}) \\ \sin(\frac{\theta}{2})e^{i\phi} \end{array} \right) </math> | <math> \chi_+ = \left( \begin{array}{c} \cos(\frac{\theta}{2}) \\ \sin(\frac{\theta}{2})e^{-i\phi} \end{array} \right) </math> | ||
And, for <math> v_-, \frac{b}{a} = -\cot(\frac{\theta}{2})e^{i\phi} </math> | And, for <math> v_-, \frac{b}{a} = -\cot(\frac{\theta}{2})e^{i\phi} </math> | ||
Line 37: | Line 37: | ||
So that <math> \chi_- = \left( \begin{array}{c} \sin(\frac{\theta}{2}) \\ -\cos(\frac{\theta}{2})e^{i\phi} \end{array} \right) </math> | So that <math> \chi_- = \left( \begin{array}{c} \sin(\frac{\theta}{2}) \\ -\cos(\frac{\theta}{2})e^{i\phi} \end{array} \right) </math> | ||
===b.) Verify that the two resulting eigenvectors are orthogonal.=== | ====b.) Verify that the two resulting eigenvectors are orthogonal.==== | ||
Show that | |||
<math> \langle\Chi_{+}|\Chi_{-}\rangle = 0 </math> | |||
Where, from above, | |||
<math> \langle\Chi_{+}| = \left( \cos(\frac{\theta}{2}) \;\; \sin(\frac{\theta}{2})e^{-i\phi} \right) </math> | |||
<math> |\Chi_{-}\rangle = \left(\begin{array}{c} \sin(\frac{\theta}{2}) \\ -\cos(\frac{\theta}{2})e^{i\phi} \end{array} \right) </math> | |||
So that, | |||
<math> \langle\Chi_{+}|\Chi_{-}\rangle = \cos(\frac{\theta}{2})\sin(\frac{\theta}{2}) - \sin(\frac{\theta}{2})\cos(\frac{\theta}{2})e^{i\phi}e^{-i\phi} = 0</math> | |||
As expected. | |||
===c.) Show that these vectors satisfy the closure relation.=== | ===c.) Show that these vectors satisfy the closure relation.=== | ||
This amounts to showing that | |||
<math> \sum_{i} |\Chi_i\rangle\langle\Chi_i| = \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right) </math> | |||
So: | |||
<math> \langle\Chi_{+}| = \left(\cos(\frac{\theta}{2}) \; \sin(\frac{\theta}{2})e^{-i\phi}\right)</math> | |||
And thus, | |||
<math> |\Chi_{+}\rangle\langle\Chi_{+}|= \left( \begin{array}{c} \cos(\frac{\theta}{2}) \\ \sin(\frac{\theta}{2})e^{-i\phi})\end{array} \right) \left(\cos(\frac{\theta}{2}) \sin(\frac{\theta}{2})e^{-i\phi}\right)</math> | |||
<math> |\Chi_{+}\rangle\langle\Chi_{+}|= \left(\begin{array}{cc} \cos^2(\frac{\theta}{2}) & \sin(\frac{\theta}{2})\cos(\frac{\theta}{2})e^{-i\phi} \\ \sin(\frac{\theta}{2})\cos(\frac{\theta}{2})e^{-i\phi} & \sin^2(\frac{\theta}{2}) \end{array} \right) </math> | |||
While | |||
<math>|\Chi_{-}\rangle\langle\Chi_{-}|= \left( \begin{array}{c} \sin(\frac{\theta}{2}) \\ -\cos(\frac{\theta}{2})e^{i\phi})\end{array} \right) \left(\sin(\frac{\theta}{2}) -\cos(\frac{\theta}{2})e^{i\phi}\right)</math> | |||
And | |||
<math> |\Chi_{-}\rangle\langle\Chi_{-}|= \left(\begin{array}{cc} \sin^2(\frac{\theta}{2}) & -\sin(\frac{\theta}{2})\cos(\frac{\theta}{2})e^{i\phi} \\ -\sin(\frac{\theta}{2})\cos(\frac{\theta}{2})e^{i\phi} & \cos^2(\frac{\theta}{2}) \end{array} \right) </math> | |||
So, clearly, we can get: | |||
<math> |\Chi_{-}\rangle\langle\Chi_{-}| + |\Chi_{+}\rangle\langle\Chi_{+}| = \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right) </math> |
Latest revision as of 02:49, 26 April 2010
Worked Spin Problem
Consider a unit vector , measured an angle from the positive axis in the plane and angle from the positive axis.
Let the components of the spin vector along be .
a.) Solve the resulting eigenvalue equation. ()
Which, in matrix form (using the definitions of ) looks like:
And define .
So that:
And the eigenvalue equation becomes:
Which has nontrivial solutions
For
Which means that:
And, for
So that
b.) Verify that the two resulting eigenvectors are orthogonal.
Show that
Where, from above,
So that,
As expected.
c.) Show that these vectors satisfy the closure relation.
This amounts to showing that
So:
And thus,
While
And
So, clearly, we can get: