Phy5646/Group3RelativisticProb: Difference between revisions

From PhyWiki
Jump to navigation Jump to search
No edit summary
No edit summary
 
(One intermediate revision by one other user not shown)
Line 3: Line 3:


<math>i\hbar\frac{\partial}{\partial t}\psi = -i\hbar c\vec{\alpha}\cdot\nabla\psi + \Beta mc^{2}\psi</math>
<math>i\hbar\frac{\partial}{\partial t}\psi = -i\hbar c\vec{\alpha}\cdot\nabla\psi + \Beta mc^{2}\psi</math>
<math> \alpha_k = \left( \begin{array}{cc} 0 & \sigma_k \\ \sigma_x & o \end{array} \right) ; \beta = \left(\begin{array}{cc} I & 0 \\ 0 & -I \end{array} \right) </math>


So, we seek solutions of the form
So, we seek solutions of the form
Line 17: Line 19:


<math> u = \left(\begin{array}c u_a \\ u_b \end{array} \right); u_a = \left(\begin{array}c u_1 \\ u_2 \end{array} \right); u_b = \left(\begin{array}c u_3 \\ u_4 \end{array} \right) </math>
<math> u = \left(\begin{array}c u_a \\ u_b \end{array} \right); u_a = \left(\begin{array}c u_1 \\ u_2 \end{array} \right); u_b = \left(\begin{array}c u_3 \\ u_4 \end{array} \right) </math>
Our equation is now written:
<math> \left( \begin{array}{cc} mc^2 I & c\vec{\sigma}\cdot\vec{p} \\ c\vec{\sigma}\cdot\vec{p} & -mc^2 I \end{array} \right) \left(\begin{array}{c} u_a \\ u_b \end{array} \right) = E \left(\begin{array}{c} u_a \\ u_b \end{array} \right) </math>
Which gives that <math> u_a </math> and <math> u_b </math> are related by:
<math> u_a = \frac{c\vec{\sigma}\cdot\vec{p}}{E-mc^2}u_b  ;  u_b = \frac{c\vec{\sigma}\cdot\vec{p}}{E+mc^2}u_a </math>
Substituting these equations into each other gives:
<math> c^2(\vec{\sigma}\cdot\vec{p})^2 u_a = (\vec{p}\cdot\vec{p})c^2 u_a = (E^2 - m^2 c^4)u_a </math> and
<math> c^2(\vec{\sigma}\cdot\vec{p})^2 u_b = (\vec{p}\cdot\vec{p})c^2 u_b = (E^2 - m^2 c^4)u_b </math>
And, solving for the eigenenergies yields (from the two roots):
<math> E_+ = (m^2 c^4 + \vec{p}\cdot\vec{p} c^2)^{\frac{1}{2}} </math>
<math> E_- = -(m^2 c^4 + \vec{p}\cdot\vec{p} c^2)^{\frac{1}{2}} </math>
Where each one occurs twice, once for each component of the two-component spinors.
Now, solving the two-component matrix equations for <math>u_a</math> and <math>u_b</math> gives for the four components of the spinor:
<math> u_1 = N \left(\begin{array}{c} \alpha \\ \frac{c\vec{\sigma}\cdot\vec{p}}{E_{+}+mc^2} \alpha \end{array} \right) ; u_2 = N\left(\begin{array}{c} \beta \\ \frac{c\vec{\sigma}\cdot\vec{p}}{E_{+}+mc^2}\Beta  \end{array} \right) </math>
<math> u_3 = N\left(\begin{array}{c} -\frac{c\vec{\sigma}\cdot\vec{p}}{-E_{-}+mc^2}\alpha \\ \alpha \end{array} \right); u_4 = N\left(\begin{array}{c} -\frac{c\vec{\sigma}\cdot\vec{p}}{-E_{-}+mc^2}\Beta \\ \Beta \end{array} \right)</math>
Which are clearly normalized by:
<math> N=\left( \frac{E_+ + mc^2}{2E_+}\right)^2 </math>.

Latest revision as of 06:25, 26 April 2010

Free Relativistic Particle

For the Dirac Equation, find plane wave solutions for a free particle.

So, we seek solutions of the form

which is an eigenfunction of both the position and momentum operators. Note that is a constant, and is a four-component spinor, independent of the position of the particle.

Putting this general into the Dirac Equation gives a matrix equation:

Now, it becomes convenient to write the four-spinor u using two two-component spinors:

Failed to parse (unknown function "\begin{array}"): {\displaystyle u = \left(\begin{array}c u_a \\ u_b \end{array} \right); u_a = \left(\begin{array}c u_1 \\ u_2 \end{array} \right); u_b = \left(\begin{array}c u_3 \\ u_4 \end{array} \right) }

Our equation is now written:

Which gives that and are related by:

Substituting these equations into each other gives:

and

And, solving for the eigenenergies yields (from the two roots):

Where each one occurs twice, once for each component of the two-component spinors.

Now, solving the two-component matrix equations for and gives for the four components of the spinor:

Which are clearly normalized by:

.