A solved problem for spins: Difference between revisions
(New page: An electron is at rest in an oscillating magnetic field <math>B=B_{0}Cos\left ( \omega t \right )\hat{k}</math> where <math>B_{0}</math> and <math>omega</math> are constants. (a) Cons...) |
No edit summary |
||
(3 intermediate revisions by one other user not shown) | |||
Line 1: | Line 1: | ||
An electron is at rest in an oscillating magnetic field | This problem is added by team 8; | ||
Source: Introduction to Quantum Mechanics,D. Griffiths,Problem 4-34. | |||
Problem: An electron is at rest in an oscillating magnetic field | |||
<math>B=B_{0}Cos\left ( \omega t \right )\hat{k}</math> | <math>B=B_{0}Cos\left ( \omega t \right )\hat{k}</math> | ||
where <math>B_{0}</math> and <math>omega</math> are constants. | where <math>B_{0}</math> and <math>\omega</math> are constants. | ||
(a) Construct the Hamiltonian matrix for this system. | (a) Construct the Hamiltonian matrix for this system. | ||
Line 18: | Line 21: | ||
Solution: | Solution: | ||
(a) | |||
<math>H=-\mu \mathbf{B}.\mathbf{S}=-\mu B_{0}Cos(\omega t)S_{z}= -\frac{\mu B_{0} \hbar}{2}Cos(\omega t)\begin{pmatrix} | <math>H=-\mu \mathbf{B}.\mathbf{S}=-\mu B_{0}Cos(\omega t)S_{z}= -\frac{\mu B_{0} \hbar}{2}Cos(\omega t)\begin{pmatrix} | ||
Line 24: | Line 29: | ||
(b) | (b) | ||
<math>\chi (t)=\begin{pmatrix} | <math>\chi (t)=\begin{pmatrix} | ||
\alpha (t)\\\beta (t)) | \alpha (t)\\\beta (t)) | ||
Line 34: | Line 40: | ||
\end{pmatrix}=\mathbf{H}\chi =-\frac{\mu B_{0} \hbar}{2}Cos(\omega t)\begin{pmatrix} | \end{pmatrix}=\mathbf{H}\chi =-\frac{\mu B_{0} \hbar}{2}Cos(\omega t)\begin{pmatrix} | ||
1 &0 \\ | 1 &0 \\ | ||
0 &-1\end{pmatrix}</math> | 0 &-1\end{pmatrix}\begin{pmatrix} | ||
\alpha \\ | |||
\beta | |||
\end{pmatrix}=-\frac{\mu B_{0}\hbar}{2}Cos(\omega t)\begin{pmatrix} | |||
\alpha \\ -\beta | |||
\end{pmatrix}</math> | |||
<math>\dot{\alpha }=\frac{i\mu B_{0}}{2}Cos(\omega t)\alpha \Rightarrow \frac{\mathrm{d} \alpha }{ \alpha }=\frac{i\mu B_{0}}{2}Cos(\omega t)dt\Rightarrow Ln\alpha =\frac{i\mu B_{0}}{2}\frac{Sin(\omega t)}{\omega }+constant.</math> | |||
<math>\alpha (t)=Ae^{\frac{i\mu B_{0}}{2}\frac{Sin(\omega t)}{\omega }};\alpha (0)=A=\frac{1}{\sqrt{2}}</math>, so <math>\alpha (t)=\frac{1}{\sqrt{2}}e^{\frac{i\mu B_{0}}{2}\frac{Sin(\omega t)}{\omega }}</math> | |||
<math>\dot{\beta }=-i\frac{\mu B_{0}}{2}Cos(\omega t)\beta \Rightarrow \beta (t)=\frac{1}{\sqrt{2}}e^{-i\frac{\mu B_{0}}{2}\frac{Sin(\omega t)}{\omega }}\Rightarrow \chi (t)=\frac{1}{\sqrt{2}}\begin{pmatrix} e^{i\frac{\mu B_{0}}{2}\frac{Sin(\omega t)}{\omega }}\\ e^{-i\frac{\mu B_{0}}{2}\frac{Sin(\omega t)}{\omega }} \end{pmatrix}</math> | |||
(c) | |||
<math>c_{-}^{(x)}=\chi _{-}^{(x)T}\chi =\frac{1}{2}\begin{pmatrix} | |||
1 & -1 | |||
\end{pmatrix}\begin{pmatrix} e^{i\frac{\mu B_{0}}{2}\frac{Sin(\omega t)}{\omega }}\\ e^{-i\frac{\mu B_{0}}{2}\frac{Sin(\omega t)}{\omega }} \end{pmatrix}=\frac{1}{2}[e^{i\frac{\mu B_{0}}{2}\frac{Sin(\omega t)}{\omega }}-e^{-i\frac{\mu B_{0}}{2}\frac{Sin(\omega t)}{\omega }}]=iSin[\frac{\mu B_{0}}{2}\frac{Sin(\omega t)}{\omega }]</math> | |||
<math>P_{-}^{(x)}(t)=\left |c_{-}^{(x)} \right |^{2}=Sin^{2}(\frac{\mu B_{0}}{2}\frac{Sin(\omega t)}{\omega })</math> | |||
(d) | |||
The argument of <math>Sin^{2}</math> must reach <math>\frac{\pi }{2}</math> (so P=1)<math>\Rightarrow \frac{\mu B_{0}}{2\omega }=\frac{\pi }{2}</math> , or <math>B_{0}=\frac{\pi \omega }{\mu }.</math> |
Latest revision as of 12:33, 26 April 2010
This problem is added by team 8; Source: Introduction to Quantum Mechanics,D. Griffiths,Problem 4-34.
Problem: An electron is at rest in an oscillating magnetic field
where and are constants.
(a) Construct the Hamiltonian matrix for this system.
(b) The electron starts out (at t = 0) in the spin-up state with respect to the x-axis [that is,]. Determine at any subsequent time. Beware.' This is a time-dependent Hamiltonian, so you cannot get in the usual way from stationary states. Fortunately, in this case you can solve the time-dependent Schr/Sdinger equation directly.
(c) Find the probability of getting if you measure
(d) What is the minimum field required to force a complete flip in ?
Solution:
(a)
(b)
with
, so
(c)
(d)
The argument of must reach (so P=1) , or