A solved problem for spins: Difference between revisions

From PhyWiki
Jump to navigation Jump to search
(New page: An electron is at rest in an oscillating magnetic field <math>B=B_{0}Cos\left ( \omega t \right )\hat{k}</math> where <math>B_{0}</math> and <math>omega</math> are constants. (a) Cons...)
 
No edit summary
 
(3 intermediate revisions by one other user not shown)
Line 1: Line 1:
An electron is at rest in an oscillating magnetic field  
This problem is added by team 8;
Source: Introduction to Quantum Mechanics,D. Griffiths,Problem 4-34.
 
Problem: An electron is at rest in an oscillating magnetic field  


<math>B=B_{0}Cos\left ( \omega t \right )\hat{k}</math>
<math>B=B_{0}Cos\left ( \omega t \right )\hat{k}</math>
   
   
where <math>B_{0}</math> and <math>omega</math> are constants.
where <math>B_{0}</math> and <math>\omega</math> are constants.


(a) Construct the Hamiltonian matrix for this system.  
(a) Construct the Hamiltonian matrix for this system.  
Line 18: Line 21:


Solution:
Solution:
(a)


<math>H=-\mu \mathbf{B}.\mathbf{S}=-\mu B_{0}Cos(\omega t)S_{z}= -\frac{\mu B_{0} \hbar}{2}Cos(\omega t)\begin{pmatrix}
<math>H=-\mu \mathbf{B}.\mathbf{S}=-\mu B_{0}Cos(\omega t)S_{z}= -\frac{\mu B_{0} \hbar}{2}Cos(\omega t)\begin{pmatrix}
Line 24: Line 29:


(b)
(b)
<math>\chi (t)=\begin{pmatrix}
<math>\chi (t)=\begin{pmatrix}
\alpha (t)\\\beta (t))  
\alpha (t)\\\beta (t))  
Line 34: Line 40:
\end{pmatrix}=\mathbf{H}\chi =-\frac{\mu B_{0} \hbar}{2}Cos(\omega t)\begin{pmatrix}
\end{pmatrix}=\mathbf{H}\chi =-\frac{\mu B_{0} \hbar}{2}Cos(\omega t)\begin{pmatrix}
1 &0 \\  
1 &0 \\  
0 &-1\end{pmatrix}</math>
0 &-1\end{pmatrix}\begin{pmatrix}
\alpha \\
\beta
\end{pmatrix}=-\frac{\mu B_{0}\hbar}{2}Cos(\omega t)\begin{pmatrix}
\alpha \\ -\beta
 
\end{pmatrix}</math>
 
<math>\dot{\alpha }=\frac{i\mu B_{0}}{2}Cos(\omega t)\alpha \Rightarrow \frac{\mathrm{d} \alpha }{ \alpha }=\frac{i\mu B_{0}}{2}Cos(\omega t)dt\Rightarrow Ln\alpha =\frac{i\mu B_{0}}{2}\frac{Sin(\omega t)}{\omega }+constant.</math>
 
<math>\alpha (t)=Ae^{\frac{i\mu B_{0}}{2}\frac{Sin(\omega t)}{\omega }};\alpha (0)=A=\frac{1}{\sqrt{2}}</math>, so  <math>\alpha (t)=\frac{1}{\sqrt{2}}e^{\frac{i\mu B_{0}}{2}\frac{Sin(\omega t)}{\omega }}</math>
 
 
<math>\dot{\beta }=-i\frac{\mu B_{0}}{2}Cos(\omega t)\beta \Rightarrow \beta (t)=\frac{1}{\sqrt{2}}e^{-i\frac{\mu B_{0}}{2}\frac{Sin(\omega t)}{\omega }}\Rightarrow \chi (t)=\frac{1}{\sqrt{2}}\begin{pmatrix} e^{i\frac{\mu B_{0}}{2}\frac{Sin(\omega t)}{\omega }}\\ e^{-i\frac{\mu B_{0}}{2}\frac{Sin(\omega t)}{\omega }} \end{pmatrix}</math>
 
(c)
 
<math>c_{-}^{(x)}=\chi _{-}^{(x)T}\chi =\frac{1}{2}\begin{pmatrix}
1 & -1
\end{pmatrix}\begin{pmatrix} e^{i\frac{\mu B_{0}}{2}\frac{Sin(\omega t)}{\omega }}\\ e^{-i\frac{\mu B_{0}}{2}\frac{Sin(\omega t)}{\omega }} \end{pmatrix}=\frac{1}{2}[e^{i\frac{\mu B_{0}}{2}\frac{Sin(\omega t)}{\omega }}-e^{-i\frac{\mu B_{0}}{2}\frac{Sin(\omega t)}{\omega }}]=iSin[\frac{\mu B_{0}}{2}\frac{Sin(\omega t)}{\omega }]</math>
 
<math>P_{-}^{(x)}(t)=\left |c_{-}^{(x)}  \right |^{2}=Sin^{2}(\frac{\mu B_{0}}{2}\frac{Sin(\omega t)}{\omega })</math>
 
(d)
 
The argument of <math>Sin^{2}</math> must reach <math>\frac{\pi }{2}</math> (so P=1)<math>\Rightarrow \frac{\mu B_{0}}{2\omega }=\frac{\pi }{2}</math> , or <math>B_{0}=\frac{\pi \omega }{\mu }.</math>

Latest revision as of 12:33, 26 April 2010

This problem is added by team 8; Source: Introduction to Quantum Mechanics,D. Griffiths,Problem 4-34.

Problem: An electron is at rest in an oscillating magnetic field

where and are constants.

(a) Construct the Hamiltonian matrix for this system.

(b) The electron starts out (at t = 0) in the spin-up state with respect to the x-axis [that is,]. Determine at any subsequent time. Beware.' This is a time-dependent Hamiltonian, so you cannot get in the usual way from stationary states. Fortunately, in this case you can solve the time-dependent Schr/Sdinger equation directly.

(c) Find the probability of getting if you measure

(d) What is the minimum field required to force a complete flip in ?

Solution:

(a)

(b)

with

, so


(c)

(d)

The argument of must reach (so P=1) , or