Phy5646/CG coeff example2: Difference between revisions

From PhyWiki
Jump to navigation Jump to search
(New page: We are to add angular momentum <math>j_{1}= 1</math> and <math>j_{2}=1</math> to form <math>j = 2,1,0</math> states. Using either the Ladder operator or the recursion relation, express all...)
 
No edit summary
 
(One intermediate revision by one other user not shown)
Line 17: Line 17:
Now applying the <math>J_-</math> to this state we get,
Now applying the <math>J_-</math> to this state we get,


<math>J_-|j=2;m=2\rangle</math>= <math>(J_1- + J_2-)|++\rangle/math>
<math>J_-|j=2;m=2\rangle</math>= <math>(J_1- + J_2-)|++\rangle</math>


<math>J_-|j=2;m=2\rangle</math>= <math>\sqrt{4}|j=2;m=1\rangle</math> ; <math>(J_1- + J_2-)|++\rangle/math>= <math>\sqrt{2}|0+\rangle/math> + <math>\sqrt{2}|+0\rangle/math>
<math>J_-|j=2;m=2\rangle</math>= <math>\sqrt{4}|j=2;m=1\rangle</math> ; <math>(J_1- + J_2-)|++\rangle</math>= <math>\sqrt{2}|0+\rangle</math> + <math>\sqrt{2}|+0\rangle</math>


<math>|j=2;m=1\rangle</math> = <math>\sqrt{\frac{1}{2}}|0+\rangle/math> + <math>\sqrt{\frac{1}{2}}|+0\rangle/math>  
<math>|j=2;m=1\rangle</math> = <math>\sqrt{\frac{1}{2}}|0+\rangle</math> + <math>\sqrt{\frac{1}{2}}|+0\rangle</math>  


Now similarly applying <math>J_-</math> to the  state <math>|j=2;m=1\rangle</math> we get,
Now similarly applying <math>J_-</math> to the  state <math>|j=2;m=1\rangle</math> we get,


<math>J_-|j=2;m=1\rangle</math> = <math>\sqrt{\frac{1}{2}}(J_1- + J_2-)|0+\rangle/math> + <math>\sqrt{\frac{1}{2}}(J_1- + J_2-)|+0\rangle/math>
<math>J_-|j=2;m=1\rangle</math> = <math>\sqrt{\frac{1}{2}}(J_1- + J_2-)|0+\rangle</math> + <math>\sqrt{\frac{1}{2}}(J_1- + J_2-)|+0\rangle</math>




<math>\Rightarrow </math> <math>\sqrt{6}|j=2;m=0\rangle</math> = 2<math>|00\rangle/math> + <math> |-+\rangle/math> + <math> |+-\rangle/math>
<math>\Rightarrow </math> <math>\sqrt{6}|j=2;m=0\rangle</math> = 2<math>|00\rangle</math> + <math> |-+\rangle</math> + <math> |+-\rangle</math>


<math>|j=2;m=0\rangle</math> = <math>\sqrt{\frac{2}{3}}|00\rangle/math> + <math> \sqrt{\frac{1}{6}}|-+\rangle/math> + <math> \sqrt{\frac{1}{6}}|+-\rangle/math>
<math>|j=2;m=0\rangle</math> = <math>\sqrt{\frac{2}{3}}|00\rangle</math> + <math> \sqrt{\frac{1}{6}}|-+\rangle</math> + <math> \sqrt{\frac{1}{6}}|+-\rangle</math>


<math>J_-|j=2;m=0\rangle</math> = <math>\sqrt{\frac{2}{3}}(J_1- + J_2-)|00\rangle/math> + <math>\sqrt{\frac{1}{6}}(J_1- + J_2-)|+-\rangle/math> +<math>\sqrt{\frac{1}{6}}(J_1- + J_2-)|-+\rangle/math>
<math>J_-|j=2;m=0\rangle</math> = <math>\sqrt{\frac{2}{3}}(J_1- + J_2-)|00\rangle</math> + <math>\sqrt{\frac{1}{6}}(J_1- + J_2-)|+-\rangle</math> +<math>\sqrt{\frac{1}{6}}(J_1- + J_2-)|-+\rangle</math>


<math>\Rightarrow </math> <math>\sqrt{6}|j=2;m=-1\rangle</math> = <math>\sqrt{\frac{2}{3}}\sqrt{2}|-0\rangle/math> + <math>\sqrt{\frac{2}{3}}\sqrt{2}|0-\rangle/math> + <math>\sqrt{\frac{1}{6}}\sqrt{2}|0-\rangle/math> + <math>\sqrt{\frac{1}{6}}\sqrt{2}|-0\rangle/math>
<math>\Rightarrow </math> <math>\sqrt{6}|j=2;m=-1\rangle</math> = <math>\sqrt{\frac{2}{3}}\sqrt{2}|-0\rangle</math> + <math>\sqrt{\frac{2}{3}}\sqrt{2}|0-\rangle</math> + <math>\sqrt{\frac{1}{6}}\sqrt{2}|0-\rangle</math> + <math>\sqrt{\frac{1}{6}}\sqrt{2}|-0\rangle</math>


<math>|j=2;m=-1\rangle</math> = <math>\sqrt{2}|0-\rangle/math> + <math>\sqrt{2}|-0\rangle/math>
<math>|j=2;m=-1\rangle</math> = <math>\sqrt{2}|0-\rangle</math> + <math>\sqrt{2}|-0\rangle</math>


<math>J_-|j=2;m=-1\rangle</math> = <math>\sqrt{\frac{1}{2}}(J_1- + J_2-)|0-\rangle/math> + <math>\sqrt{\frac{1}{2}}(J_1- + J_2-)|-0\rangle/math>
<math>J_-|j=2;m=-1\rangle</math> = <math>\sqrt{\frac{1}{2}}(J_1- + J_2-)|0-\rangle</math> + <math>\sqrt{\frac{1}{2}}(J_1- + J_2-)|-0\rangle</math>


<math>\Rightarrow </math> <math>\sqrt{4}|j=2;m=-2\rangle</math> = <math>\sqrt{\frac{1}{2}}\sqrt{2}|--\rangle/math> + <math>\sqrt{\frac{1}{2}}\sqrt{2}|--\rangle/math>
<math>\Rightarrow </math> <math>\sqrt{4}|j=2;m=-2\rangle</math> = <math>\sqrt{\frac{1}{2}}\sqrt{2}|--\rangle</math> + <math>\sqrt{\frac{1}{2}}\sqrt{2}|--\rangle</math>


<math>|j=2;m=-2\rangle</math> = <math>|--\rangle/math>
<math>|j=2;m=-2\rangle</math> = <math>|--\rangle</math>


Now if we plug-in j=1 and m=1 in the first equation, we will get,
Now if we plug-in j=1 and m=1 in the first equation, we will get,


<math>|j=1;m=1\rangle</math> = <math>a|+0\rangle/math> + <math>b|0+\rangle/math>
<math>|j=1;m=1\rangle</math> = <math>a|+0\rangle</math> + <math>b|0+\rangle</math>


This state should be orthogonal to all other <math>|jm\rangle</math> states and in particular to <math>|j=2;m=1\rangle</math>. Therefore,
This state should be orthogonal to all other <math>|jm\rangle</math> states and in particular to <math>|j=2;m=1\rangle</math>. Therefore,
Line 60: Line 60:
<math>\Rightarrow </math> <math>|a|=\sqrt{\frac{1}{2}}</math>
<math>\Rightarrow </math> <math>|a|=\sqrt{\frac{1}{2}}</math>


<math>|j=1;m=1\rangle</math> = <math>\sqrt{\frac{1}{2}}|+0\rangle/math> - <math>\sqrt{\frac{1}{2}}|0+\rangle/math>
<math>|j=1;m=1\rangle</math> = <math>\sqrt{\frac{1}{2}}|+0\rangle</math> - <math>\sqrt{\frac{1}{2}}|0+\rangle</math>


Now following the same procedure as above,
Now following the same procedure as above,


<math>J_-|j=1;m=1\rangle</math> = <math>\sqrt{\frac{1}{2}}(J_1- + J_2-)|+0\rangle/math> - <math>\sqrt{\frac{1}{2}}(J_1- + J_2-)|0+\rangle/math>
<math>J_-|j=1;m=1\rangle</math> = <math>\sqrt{\frac{1}{2}}(J_1- + J_2-)|+0\rangle</math> - <math>\sqrt{\frac{1}{2}}(J_1- + J_2-)|0+\rangle</math>


<math>|j=1;m=0\rangle</math> = <math>\sqrt{\frac{1}{2}}|+-\rangle/math> - <math>\sqrt{\frac{1}{2}}|-+\rangle/math>
<math>|j=1;m=0\rangle</math> = <math>\sqrt{\frac{1}{2}}|+-\rangle</math> - <math>\sqrt{\frac{1}{2}}|-+\rangle</math>


Again, we can write,
Again, we can write,


<math>J_-|j=1;m=0\rangle</math> = <math>\sqrt{\frac{1}{2}}(J_1- + J_2-)|+-\rangle/math> - <math>\sqrt{\frac{1}{2}}(J_1- + J_2-)|+-\rangle/math>
<math>J_-|j=1;m=0\rangle</math> = <math>\sqrt{\frac{1}{2}}(J_1- + J_2-)|+-\rangle</math> - <math>\sqrt{\frac{1}{2}}(J_1- + J_2-)|+-\rangle</math>


<math>|j=1;m=-1\rangle</math> = <math>\sqrt{\frac{1}{2}}|0-\rangle/math> - <math>\sqrt{\frac{1}{2}}|-0\rangle/math>
<math>|j=1;m=-1\rangle</math> = <math>\sqrt{\frac{1}{2}}|0-\rangle</math> - <math>\sqrt{\frac{1}{2}}|-0\rangle</math>


Now if we start with the state <math>|j=0;m=0\rangle</math>, it can be written as,
Now if we start with the state <math>|j=0;m=0\rangle</math>, it can be written as,


<math>|j=0;m=0\rangle</math> = <math>c_1|00\rangle/math> + <math>c_2|+-\rangle/math> + <math>c_3|+-\rangle/math>
<math>|j=0;m=0\rangle</math> = <math>c_1|00\rangle</math> + <math>c_2|+-\rangle</math> + <math>c_3|+-\rangle</math>


This state should be orthogonal to all other <math>|jm\rangle</math> states and in particular to <math>|j=2;m=0\rangle</math>. Therefore,
This state should be orthogonal to all other <math>|jm\rangle</math> states and in particular to <math>|j=2;m=0\rangle</math>. Therefore,
Line 90: Line 90:
Therefore from the last equations we get,
Therefore from the last equations we get,


<math>c_1+c_2= 0</math> math>\Rightarrow </math> <math>c_1 = -c_2</math>
<math>c_1+c_2= 0</math> <math>\Rightarrow </math> <math>c_1 = -c_2</math>


This state <math>|j=0;m=0\rangle</math> must be normalized
This state <math>|j=0;m=0\rangle</math> must be normalized
Line 101: Line 101:




<math>|j=0;m=0\rangle</math> = <math>\sqrt{\frac{1}{3}}|+-\rangle/math> + <math>\sqrt{\frac{1}{3}}|-+\rangle/math> - <math>\sqrt{\frac{1}{3}}|00\rangle/math>
<math>|j=0;m=0\rangle</math> = <math>\sqrt{\frac{1}{3}}|+-\rangle</math> + <math>\sqrt{\frac{1}{3}}|-+\rangle</math> - <math>\sqrt{\frac{1}{3}}|00\rangle</math>


Now we express the <math>|j;m\rangle</math> state is terms of <math>|j_1 j_2; m_1 m_2</math> states or <math>|m_1 m_2\rangle</math> states.
Now we express the <math>|j;m\rangle</math> state is terms of <math>|j_1 j_2; m_1 m_2</math> states or <math>|m_1 m_2\rangle</math> states.
Line 107: Line 107:
<math>|j=2 m=2\rangle</math> = <math>|++\rangle</math>
<math>|j=2 m=2\rangle</math> = <math>|++\rangle</math>


<math>|j=2;m=1\rangle</math> = <math>\sqrt{\frac{1}{2}}|0+\rangle/math> + <math>\sqrt{\frac{1}{2}}|+0\rangle/math>  
<math>|j=2;m=1\rangle</math> = <math>\sqrt{\frac{1}{2}}|0+\rangle</math> + <math>\sqrt{\frac{1}{2}}|+0\rangle</math>  




<math>|j=2;m=0\rangle</math> = <math>\sqrt{\frac{2}{3}}|00\rangle/math> + <math> \sqrt{\frac{1}{6}}|-+\rangle/math> + <math> \sqrt{\frac{1}{6}}|+-\rangle/math>
<math>|j=2;m=0\rangle</math> = <math>\sqrt{\frac{2}{3}}|00\rangle</math> + <math> \sqrt{\frac{1}{6}}|-+\rangle</math> + <math> \sqrt{\frac{1}{6}}|+-\rangle</math>


<math>|j=2;m=-1\rangle</math> = <math>\sqrt{2}|0-\rangle/math> + <math>\sqrt{2}|-0\rangle/math>
<math>|j=2;m=-1\rangle</math> = <math>\sqrt{2}|0-\rangle</math> + <math>\sqrt{2}|-0\rangle</math>


<math>|j=2;m=-2\rangle</math> = <math>|--\rangle/math>
<math>|j=2;m=-2\rangle</math> = <math>|--\rangle</math>


<math>|j=1;m=1\rangle</math> = <math>\sqrt{\frac{1}{2}}|+0\rangle/math> - <math>\sqrt{\frac{1}{2}}|0+\rangle/math>
<math>|j=1;m=1\rangle</math> = <math>\sqrt{\frac{1}{2}}|+0\rangle</math> - <math>\sqrt{\frac{1}{2}}|0+\rangle</math>


<math>|j=1;m=0\rangle</math> = <math>\sqrt{\frac{1}{2}}|+-\rangle/math> - <math>\sqrt{\frac{1}{2}}|-+\rangle/math>
<math>|j=1;m=0\rangle</math> = <math>\sqrt{\frac{1}{2}}|+-\rangle</math> - <math>\sqrt{\frac{1}{2}}|-+\rangle</math>


<math>|j=1;m=-1\rangle</math> = <math>\sqrt{\frac{1}{2}}|0-\rangle/math> - <math>\sqrt{\frac{1}{2}}|-0\rangle/math>
<math>|j=1;m=-1\rangle</math> = <math>\sqrt{\frac{1}{2}}|0-\rangle</math> - <math>\sqrt{\frac{1}{2}}|-0\rangle</math>


<math>|j=0;m=0\rangle</math> = <math>\sqrt{\frac{1}{3}}|+-\rangle/math> + <math>\sqrt{\frac{1}{3}}|-+\rangle/math> - <math>\sqrt{\frac{1}{3}}|00\rangle/math>
<math>|j=0;m=0\rangle</math> = <math>\sqrt{\frac{1}{3}}|+-\rangle</math> + <math>\sqrt{\frac{1}{3}}|-+\rangle</math> - <math>\sqrt{\frac{1}{3}}|00\rangle</math>

Latest revision as of 14:30, 27 April 2010

We are to add angular momentum Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j_{1}= 1} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j_{2}=1} to form Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j = 2,1,0} states. Using either the Ladder operator or the recursion relation, express all(nine) {j,m} eigenkets in terms of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |j_1 j_2; m_1 m_2\rangle} . Wrtie the answers as:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |j=1, m=1\rangle} = Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{\sqrt{2}}|+,0\rangle} -Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{\sqrt{2}}|0,+\rangle} .......

where + and 0 stand for Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle m_{1,2}=1,0} respectively. (Sakurai-3.20)

Answer:

We want to add the angular momentum Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j_{1}= 1} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j_{2}= 1} to form Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j= |j_{1}-j_{2}|} ,.....Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j_{1}+j_{2}} = 0,1,2 states. Lets start from simplest state Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j= 2} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle m= 2} . This state is related to Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |j_1 m_1; j_2m_2\rangle} through the following equation:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |j m\rangle} = Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum _{m= m_{1}+m_{2}}} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \langle j_1 j_2; m_1m_2||j_1 j_2; jm\rangle |j_1 j_2; m_1m_2\rangle}

For Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j= 2} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle m= 2} in above equation, we get

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |j=2 m=2\rangle} = Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \langle j_1 j_2; ++||j_1 j_2; jm\rangle |j_1 j_2; ++\rangle} = Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |++\rangle}

Now applying the Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle J_-} to this state we get,

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle J_-|j=2;m=2\rangle} = Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (J_1- + J_2-)|++\rangle}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle J_-|j=2;m=2\rangle} = Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sqrt{4}|j=2;m=1\rangle}  ; Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (J_1- + J_2-)|++\rangle} = Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sqrt{2}|0+\rangle} + Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sqrt{2}|+0\rangle}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |j=2;m=1\rangle} = Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sqrt{\frac{1}{2}}|0+\rangle} + Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sqrt{\frac{1}{2}}|+0\rangle}

Now similarly applying Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle J_-} to the state Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |j=2;m=1\rangle} we get,

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle J_-|j=2;m=1\rangle} = Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sqrt{\frac{1}{2}}(J_1- + J_2-)|0+\rangle} + Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sqrt{\frac{1}{2}}(J_1- + J_2-)|+0\rangle}


Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Rightarrow } Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sqrt{6}|j=2;m=0\rangle} = 2Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |00\rangle} + Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |-+\rangle} + Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |+-\rangle}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |j=2;m=0\rangle} = Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sqrt{\frac{2}{3}}|00\rangle} + Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sqrt{\frac{1}{6}}|-+\rangle} + Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sqrt{\frac{1}{6}}|+-\rangle}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle J_-|j=2;m=0\rangle} = Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sqrt{\frac{2}{3}}(J_1- + J_2-)|00\rangle} + +

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sqrt{6}|j=2;m=-1\rangle} = + + +

= +

= Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sqrt{\frac{1}{2}}(J_1- + J_2-)|0-\rangle} + Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sqrt{\frac{1}{2}}(J_1- + J_2-)|-0\rangle}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Rightarrow } Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sqrt{4}|j=2;m=-2\rangle} = Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sqrt{\frac{1}{2}}\sqrt{2}|--\rangle} + Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sqrt{\frac{1}{2}}\sqrt{2}|--\rangle}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |j=2;m=-2\rangle} = Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |--\rangle}

Now if we plug-in j=1 and m=1 in the first equation, we will get,

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |j=1;m=1\rangle} = Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a|+0\rangle} + Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle b|0+\rangle}

This state should be orthogonal to all other Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |jm\rangle} states and in particular to Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |j=2;m=1\rangle} . Therefore,

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \langle j=2;m=1|j=1;m=1\rangle} = 0

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a+b= 0} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Rightarrow } Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a= -b }

Now we normalize the state Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |j=1;m=1\rangle} ,

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \langle j=1;m=1|j=1;m=1\rangle} = 1 Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Rightarrow } Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |a|^{2} + |b|^{2}} =1

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Rightarrow } Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |a|=\sqrt{\frac{1}{2}}}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |j=1;m=1\rangle} = Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sqrt{\frac{1}{2}}|+0\rangle} - Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sqrt{\frac{1}{2}}|0+\rangle}

Now following the same procedure as above,

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle J_-|j=1;m=1\rangle} = Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sqrt{\frac{1}{2}}(J_1- + J_2-)|+0\rangle} - Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sqrt{\frac{1}{2}}(J_1- + J_2-)|0+\rangle}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |j=1;m=0\rangle} = Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sqrt{\frac{1}{2}}|+-\rangle} - Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sqrt{\frac{1}{2}}|-+\rangle}

Again, we can write,

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle J_-|j=1;m=0\rangle} = Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sqrt{\frac{1}{2}}(J_1- + J_2-)|+-\rangle} - Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sqrt{\frac{1}{2}}(J_1- + J_2-)|+-\rangle}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |j=1;m=-1\rangle} = Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sqrt{\frac{1}{2}}|0-\rangle} - Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sqrt{\frac{1}{2}}|-0\rangle}

Now if we start with the state Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |j=0;m=0\rangle} , it can be written as,

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |j=0;m=0\rangle} = Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle c_1|00\rangle} + Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle c_2|+-\rangle} + Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle c_3|+-\rangle}

This state should be orthogonal to all other Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |jm\rangle} states and in particular to Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |j=2;m=0\rangle} . Therefore,

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \langle j=2;m=0|j=0;m=0\rangle} = 0

= 0

Therefore from the last equations we get,

This state must be normalized

= 1 =1

therefore, and . So we get


= + -

Now we express the state is terms of states or states.

=

= +


= + +

= +

=

= -

= -

= -

= + -