|
|
Line 39: |
Line 39: |
|
| |
|
| &=\frac{1}{(i\hbar)^2}\int_{-\infty}^{t}dt'\int_{-\infty}^{t'}dt'' \sum_{m=-1,0,1} \langle g,0,0;1_{\lambda_k ,k },1_{\lambda '_{k'},k' } |\mathcal{H}'_I(t') |i,1,m;1_{\lambda ,k } \rangle \langle i,1,m;1_{\lambda ,k }| \mathcal{H}'_I(t'')|e,0,0;\phi\rangle \\ | | &=\frac{1}{(i\hbar)^2}\int_{-\infty}^{t}dt'\int_{-\infty}^{t'}dt'' \sum_{m=-1,0,1} \langle g,0,0;1_{\lambda_k ,k },1_{\lambda '_{k'},k' } |\mathcal{H}'_I(t') |i,1,m;1_{\lambda ,k } \rangle \langle i,1,m;1_{\lambda ,k }| \mathcal{H}'_I(t'')|e,0,0;\phi\rangle \\ |
| &=\sum_{m=-1,0,1} f(t,w_k,w_k') \langle g,0,0|p|i,1,m\rangle \cdot \hat{\lambda^{'*}_{k'}} \langle i,1,m|p|e,0,0\rangle \cdot \hat{\lambda^{*}_{k}} | | &=\sum_{m=-1,0,1} f(t,w_k,w_k') \left(\langle g,0,0|p|i,1,m\rangle \cdot \hat{\lambda^{'*}_{k'}} \right)\left( \langle i,1,m|p|e,0,0\rangle\cdot \hat{\lambda^{*}_{k}}\right ) |
| \end{align} </math> | | \end{align} </math> |
Question: A monoatomic atom undergo spontaneous emission. It changes from an excited state
with
to an intermediate state
with
emitting a photon with wave vector
, and then to the ground state
with
emitting a photon with wave vector
. Find the probability that the angle between the two wavevectors to be
.
Ans:
where
Using second order time dependent perturbation theory , we can write the wavefunction in Dirac picture as,
where
with
Since the system has rotational symmetry, so the internal eigenstate is
, where
. The initial photon field is null
. Initially
, so
, so intial state is
and final state is
. Therefore
where to change from state
to
to
, we need two momentum operator, so the first term must be zero. And so