Talk:Phy5646: Difference between revisions

From PhyWiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
Question: A monoatomic atom undergo spontaneous emission. It changes from an excited state <math>|e\rangle</math> with <math>l=0</math> to an intermediate state <math>|i\rangle</math> with <math>l=1</math> emitting a photon with wave vector <math>\mathbf{k}</math>, and then to the ground state <math>|g\rangle</math> with <math>l=0</math> emitting a photon with wave vector <math>\mathbf{k'}</math>. Find the probability that the angle between the two wavevectors to be <math> \theta </math>.
Question: A monoatomic atom undergo spontaneous emission. It changes from an excited state <math>|e\rangle</math> with <math>l=0</math> to an intermediate state <math>|i\rangle</math> with <math>l=1</math> emitting a photon with wave vector <math>\mathbf{k}</math>, and then to the ground state <math>|g\rangle</math> with <math>l=0</math> emitting a photon with wave vector <math>\mathbf{k'}</math>. Find the probability that the angle between the two wavevectors to be <math> \gamma </math>.


Ans:
Ans:


<math>\mathcal{H}=\frac{1}{2m}\left(p-\frac{e}{c}A(r)\right)^2+V(r)+\sum_{k,\hat{\lambda_k}}\hbar\omega_{k}\left(\hat{a}_{k\hat{\lambda_k}}^{\dagger}\hat{a}_{k\hat{\lambda_k}}+\frac{1}{2}\right) </math>
<math>\mathcal{H}=\frac{1}{2m}\left(\mathbf{p}-\frac{e}{c}A(r)\right)^2+V(r)+\sum_{k,\hat{\lambda_k}}\hbar\omega_{k}\left(\hat{a}_{k\hat{\lambda_k}}^{\dagger}\hat{a}_{k\hat{\lambda_k}}+\frac{1}{2}\right) </math>


where
where
Line 19: Line 19:


<math>\mathcal{H}'_I(t)=e^{\frac{i}{\hbar}\mathcal{H}^{(at)}_0t}\left(
<math>\mathcal{H}'_I(t)=e^{\frac{i}{\hbar}\mathcal{H}^{(at)}_0t}\left(
-\frac{e}{mc}A(r,t)\cdot p+\frac{e^2}{2mc^2}A(r,t)\cdot A(r,t)\right)e^{-\frac{i}{\hbar}\mathcal{H}^{(at)}_0t}</math>
-\frac{e}{mc}A(r,t)\cdot \mathbf{p}+\frac{e^2}{2mc^2}A(r,t)\cdot A(r,t)\right)e^{-\frac{i}{\hbar}\mathcal{H}^{(at)}_0t}</math>


with  
with  
Line 39: Line 39:


&=\frac{1}{(i\hbar)^2}\int_{-\infty}^{t}dt'\int_{-\infty}^{t'}dt'' \sum_{m=-1,0,1} \langle g,0,0;1_{\lambda_k ,k },1_{\lambda '_{k'},k' }  |\mathcal{H}'_I(t') |i,1,m;1_{\lambda ,k }  \rangle  \langle i,1,m;1_{\lambda ,k }|  \mathcal{H}'_I(t'')|e,0,0;\phi\rangle \\
&=\frac{1}{(i\hbar)^2}\int_{-\infty}^{t}dt'\int_{-\infty}^{t'}dt'' \sum_{m=-1,0,1} \langle g,0,0;1_{\lambda_k ,k },1_{\lambda '_{k'},k' }  |\mathcal{H}'_I(t') |i,1,m;1_{\lambda ,k }  \rangle  \langle i,1,m;1_{\lambda ,k }|  \mathcal{H}'_I(t'')|e,0,0;\phi\rangle \\
&=\sum_{m=-1,0,1} f(t,w_k,w_k') \left(\langle g,0,0|p|i,1,m\rangle \cdot \hat{\lambda^{'*}_{k'}} \right)\left( \langle i,1,m|p|e,0,0\rangle\cdot \hat{\lambda^{*}_{k}}\right  )
&=\sum_{m=-1,0,1} f(t,w_k,w_k') \left(\langle g,0,0|\mathbf{p}|i,1,m\rangle \cdot \hat{\lambda^{'*}_{k'}} \right)\left( \langle i,1,m|\mathbf{p}|e,0,0\rangle\cdot \hat{\lambda^{*}_{k}}\right  )
   \end{align}  </math>
   \end{align}  </math>
Here
<math>\begin{align} \frac{\mathbf{p}}{m}&=\frac{i}{\hbar}  [\mathcal{H}^{(at)}_0,\mathbf{r}]  \\
\langle i,1,m| \frac{\mathbf{p}}{m} |e,0,0\rangle  &=\frac{i}{\hbar}  \langle i,1,m| [\mathcal{H}^{(at)}_0,\mathbf{r}] |e,0,0\rangle \\
&=\frac{i}{\hbar} (E_{i}-E_{e}) \langle i,1,m|\mathbf{r} |e,0,0\rangle \\
\langle g,0,0| \frac{\mathbf{p}}{m} |i,1,m\rangle  &=\frac{i}{\hbar} (E_{g}-E_{i}) \langle g,0,0| \mathbf{r} |i,1,m\rangle
  \end{align}  </math>
Define
<math>\begin{align}
r_+&=x+iy=rsin\theta e^{i\phi} \\
r_-&=x-iy=rsin\theta e^{-i\phi} \\
x&=(r_+ + r_-)/2 \\
y&=(r_+ - r_-)/2i \end{align}  </math>

Revision as of 11:55, 29 April 2010

Question: A monoatomic atom undergo spontaneous emission. It changes from an excited state with to an intermediate state with emitting a photon with wave vector , and then to the ground state with emitting a photon with wave vector . Find the probability that the angle between the two wavevectors to be .

Ans:

where



Using second order time dependent perturbation theory , we can write the wavefunction in Dirac picture as,

where

with

Since the system has rotational symmetry, so the internal eigenstate is , where . The initial photon field is null . Initially , so , so intial state is and final state is . Therefore


where to change from state to to , we need two momentum operator, so the first term must be zero. And so


Here


Define