|
|
Line 1: |
Line 1: |
| Question: A monoatomic atom undergo spontaneous emission. It changes from an excited state <math>|e\rangle</math> with <math>l=0</math> to an intermediate state <math>|i\rangle</math> with <math>l=1</math> emitting a photon with wave vector <math>\mathbf{k}</math>, and then to the ground state <math>|g\rangle</math> with <math>l=0</math> emitting a photon with wave vector <math>\mathbf{k'}</math>. Find the probability that the angle between the two wavevectors to be <math> \theta </math>. | | Question: A monoatomic atom undergo spontaneous emission. It changes from an excited state <math>|e\rangle</math> with <math>l=0</math> to an intermediate state <math>|i\rangle</math> with <math>l=1</math> emitting a photon with wave vector <math>\mathbf{k}</math>, and then to the ground state <math>|g\rangle</math> with <math>l=0</math> emitting a photon with wave vector <math>\mathbf{k'}</math>. Find the probability that the angle between the two wavevectors to be <math> \gamma </math>. |
|
| |
|
| Ans: | | Ans: |
|
| |
|
| <math>\mathcal{H}=\frac{1}{2m}\left(p-\frac{e}{c}A(r)\right)^2+V(r)+\sum_{k,\hat{\lambda_k}}\hbar\omega_{k}\left(\hat{a}_{k\hat{\lambda_k}}^{\dagger}\hat{a}_{k\hat{\lambda_k}}+\frac{1}{2}\right) </math> | | <math>\mathcal{H}=\frac{1}{2m}\left(\mathbf{p}-\frac{e}{c}A(r)\right)^2+V(r)+\sum_{k,\hat{\lambda_k}}\hbar\omega_{k}\left(\hat{a}_{k\hat{\lambda_k}}^{\dagger}\hat{a}_{k\hat{\lambda_k}}+\frac{1}{2}\right) </math> |
|
| |
|
| where | | where |
Line 19: |
Line 19: |
|
| |
|
| <math>\mathcal{H}'_I(t)=e^{\frac{i}{\hbar}\mathcal{H}^{(at)}_0t}\left( | | <math>\mathcal{H}'_I(t)=e^{\frac{i}{\hbar}\mathcal{H}^{(at)}_0t}\left( |
| -\frac{e}{mc}A(r,t)\cdot p+\frac{e^2}{2mc^2}A(r,t)\cdot A(r,t)\right)e^{-\frac{i}{\hbar}\mathcal{H}^{(at)}_0t}</math> | | -\frac{e}{mc}A(r,t)\cdot \mathbf{p}+\frac{e^2}{2mc^2}A(r,t)\cdot A(r,t)\right)e^{-\frac{i}{\hbar}\mathcal{H}^{(at)}_0t}</math> |
|
| |
|
| with | | with |
Line 39: |
Line 39: |
|
| |
|
| &=\frac{1}{(i\hbar)^2}\int_{-\infty}^{t}dt'\int_{-\infty}^{t'}dt'' \sum_{m=-1,0,1} \langle g,0,0;1_{\lambda_k ,k },1_{\lambda '_{k'},k' } |\mathcal{H}'_I(t') |i,1,m;1_{\lambda ,k } \rangle \langle i,1,m;1_{\lambda ,k }| \mathcal{H}'_I(t'')|e,0,0;\phi\rangle \\ | | &=\frac{1}{(i\hbar)^2}\int_{-\infty}^{t}dt'\int_{-\infty}^{t'}dt'' \sum_{m=-1,0,1} \langle g,0,0;1_{\lambda_k ,k },1_{\lambda '_{k'},k' } |\mathcal{H}'_I(t') |i,1,m;1_{\lambda ,k } \rangle \langle i,1,m;1_{\lambda ,k }| \mathcal{H}'_I(t'')|e,0,0;\phi\rangle \\ |
| &=\sum_{m=-1,0,1} f(t,w_k,w_k') \left(\langle g,0,0|p|i,1,m\rangle \cdot \hat{\lambda^{'*}_{k'}} \right)\left( \langle i,1,m|p|e,0,0\rangle\cdot \hat{\lambda^{*}_{k}}\right ) | | &=\sum_{m=-1,0,1} f(t,w_k,w_k') \left(\langle g,0,0|\mathbf{p}|i,1,m\rangle \cdot \hat{\lambda^{'*}_{k'}} \right)\left( \langle i,1,m|\mathbf{p}|e,0,0\rangle\cdot \hat{\lambda^{*}_{k}}\right ) |
| \end{align} </math> | | \end{align} </math> |
| | |
| | |
| | Here |
| | |
| | <math>\begin{align} \frac{\mathbf{p}}{m}&=\frac{i}{\hbar} [\mathcal{H}^{(at)}_0,\mathbf{r}] \\ |
| | |
| | \langle i,1,m| \frac{\mathbf{p}}{m} |e,0,0\rangle &=\frac{i}{\hbar} \langle i,1,m| [\mathcal{H}^{(at)}_0,\mathbf{r}] |e,0,0\rangle \\ |
| | &=\frac{i}{\hbar} (E_{i}-E_{e}) \langle i,1,m|\mathbf{r} |e,0,0\rangle \\ |
| | \langle g,0,0| \frac{\mathbf{p}}{m} |i,1,m\rangle &=\frac{i}{\hbar} (E_{g}-E_{i}) \langle g,0,0| \mathbf{r} |i,1,m\rangle |
| | \end{align} </math> |
| | |
| | |
| | Define |
| | |
| | <math>\begin{align} |
| | r_+&=x+iy=rsin\theta e^{i\phi} \\ |
| | r_-&=x-iy=rsin\theta e^{-i\phi} \\ |
| | x&=(r_+ + r_-)/2 \\ |
| | y&=(r_+ - r_-)/2i \end{align} </math> |
Question: A monoatomic atom undergo spontaneous emission. It changes from an excited state
with
to an intermediate state
with
emitting a photon with wave vector
, and then to the ground state
with
emitting a photon with wave vector
. Find the probability that the angle between the two wavevectors to be
.
Ans:
where
Using second order time dependent perturbation theory , we can write the wavefunction in Dirac picture as,
where
with
Since the system has rotational symmetry, so the internal eigenstate is
, where
. The initial photon field is null
. Initially
, so
, so intial state is
and final state is
. Therefore
where to change from state
to
to
, we need two momentum operator, so the first term must be zero. And so
Here
Define