Phy5646/homeworkintimeperturbation: Difference between revisions
Jump to navigation
Jump to search
(New page: 123) |
No edit summary |
||
Line 1: | Line 1: | ||
<math>H=H_{0}+H_{1}(t)</math> | |||
<math>H_{0}=E_{1}|1\rangle\langle1|+E_{2}|2\rangle\langle2|</math> | |||
<math>H_{1}(t)=\gamma e^{i\omega t}|1\rangle\langle2|+\gamma e^{-i\omega t}|2\rangle\langle1|</math> | |||
<math>\psi=a_{1}(t)e^{-iE_{1}t/\hbar}|1\rangle+a_{2}(t)e^{-iE_{2}t/\hbar}|2\rangle</math> | |||
<math>a_{j}(t)=C_{j}e^{i\lambda_{+}t}+D_{j}e^{i\lambda_{-}t},\ j=1,2</math> | |||
<math>i\hbar\frac{\partial\Psi}{\partial t}=H\Psi</math> | |||
<math>(i\hbar\dot{a}_{1}e^{-iE_{1}t/\hbar}+E_{1}a_{1}e^{-iE_{1}t/\hbar})|1\rangle+(i\hbar\dot{a}_{2}e^{-iE_{2}t/\hbar}+E_{2}a_{2}e^{-iE_{2}t/\hbar})|2\rangle=a_{1}e^{-iE_{1}t/\hbar}(E_{1}|1\rangle+\gamma e^{-i\omega t}|2\rangle)+a_{2}e^{-iE_{2}t/\hbar}(E_{2}|2\rangle+\gamma e^{i\omega t}|1\rangle)</math> | |||
<math>i\hbar\dot{a}_{1}=a_{2}e^{i(E_{1}-E_{2})t/\hbar}\gamma e^{i\omega t}=\gamma e^{i(\omega-\omega_{21})t}a_{2}</math> | |||
<math>i\hbar\dot{a}_{2}=a_{1}e^{i(E_{1}-E_{2})t/\hbar}\gamma e^{-i\omega t}=\gamma e^{-i(\omega-\omega_{21})t}a_{1}</math> | |||
<math>i\hbar e^{-i(\omega-\omega_{21})t}\dot{a}_{1}=\gamma a_{2}</math> | |||
<math>(\omega-\omega_{21})\hbar e^{-i(\omega-\omega_{21})t}\dot{a}_{1}+i\hbar e^{-i(\omega-\omega_{21})t}\ddot{a}_{1}=\gamma\dot{a}_{2}=\frac{\gamma^{2}}{i\hbar}e^{-i(\omega-\omega_{21})t}a_{1}</math> | |||
<math>-\hbar^{2}\ddot{a}_{1}+i\hbar^{2}(\omega-\omega_{21})\dot{a}_{1}-\gamma^{2}a_{1}=0<math> | |||
<math>a\sim e^{i\lambda t}</math> | |||
<math>\hbar^{2}\lambda^{2}-\hbar^{2}\lambda(\omega-\omega_{21})-\gamma^{2}=0</math> | |||
<math>\lambda_{\pm}=\frac{1}{2}(\omega-\omega_{21})\pm\frac{1}{2}\sqrt{(\omega-\omega_{21})^{2}+4\frac{\gamma^{2}}{\hbar^{2}}}</math> | |||
<math>a_{1}(t)=C_{1}e^{i\lambda_{+}t}+B_{1}e^{i\lambda_{-}t}</math> | |||
<math>a_{2}(t)=C_{2}e^{i\lambda_{+}t}+B_{2}e^{i\lambda_{-}t}</math> | |||
<math>a_{2}(0)=0</math> | |||
<math>C_{2}=-B_{2}</math> | |||
<math>a_{2}(t)=2iC_{2}e^{i(\omega-\omega_{21})t/2}\sin[t\sqrt{\frac{(\omega-\omega_{21})^{2}}{4}+\frac{\gamma^{2}}{\hbar^{2}}}]</math> | |||
<math>a_{1}(t)=\frac{i\hbar}{\gamma}e^{i(\omega-\omega_{21})t}\dot{a}_{2}=-\frac{2\hbar}{\gamma}C_{2}\{i\frac{\omega-\omega_{21}}{2}\sin[t\sqrt{\frac{(\omega-\omega_{21})^{2}}{4}+\frac{\gamma^{2}}{\hbar^{2}}}]+\sqrt{\frac{(\omega-\omega_{21})^{2}}{4}+\frac{\gamma^{2}}{\hbar^{2}}}\cos[t\sqrt{\frac{(\omega-\omega_{21})^{2}}{4}+\frac{\gamma^{2}}{\hbar^{2}}}]\}e^{i\frac{3}{2}(\omega-\omega_{21})t}</math> | |||
<math>a_{1}(0)=1</math> | |||
<math>C_{2}=-\frac{\gamma}{2\hbar\sqrt{\frac{(\omega-\omega_{21})^{2}}{4}+\frac{\gamma^{2}}{\hbar^{2}}}}</math> | |||
<math>|a_{2}(t)|^{2}=\frac{(\gamma/\hbar)^{2}}{\frac{1}{4}(\omega-\omega_{21})^{2}+\frac{\gamma^{2}}{\hbar^{2}}}\sin^{2}[t\sqrt{\frac{(\omega-\omega_{21})^{2}}{4}+\frac{\gamma^{2}}{\hbar^{2}}}]</math> | |||
<math>|a_{1}(t)|^{2}=\frac{1}{\frac{1}{4}(\omega-\omega_{21})^{2}+\frac{\gamma^{2}}{\hbar^{2}}}\{[\frac{(\omega-\omega_{21})^{2}}{4}+\frac{\gamma^{2}}{\hbar^{2}}]\cos^{2}[t\sqrt{\frac{(\omega-\omega_{21})^{2}}{4}+\frac{\gamma^{2}}{\hbar^{2}}}]+\frac{(\omega-\omega_{21})^{2}}{4}\sin^{2}[t\sqrt{\frac{(\omega-\omega_{21})^{2}}{4}+\frac{\gamma^{2}}{\hbar^{2}}}]\}=1-\frac{\gamma^{2}/\hbar^{2}}{\frac{(\omega-\omega_{21})^{2}}{4}+\frac{\gamma^{2}}{\hbar^{2}}}\sin^{2}[t\sqrt{\frac{(\omega-\omega_{21})^{2}}{4}+\frac{\gamma^{2}}{\hbar^{2}}}]=1-|a_{2}(t)|^{2}</math> | |||
<math>F(\omega)=\frac{(2\gamma/\hbar)^{2}}{(\omega-\omega_{21})^{2}+(2\gamma/\hbar)^{2}}</math> | |||
<math>\omega=\omega_{21}=\frac{E_{2}-E_{1}}{\hbar}</math> | |||
<math>4\gamma/\hbar</math> |
Revision as of 16:19, 29 April 2010