Phy5646/homeworkintimeperturbation: Difference between revisions

From PhyWiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 28: Line 28:


<math>(i\hbar\dot{a}_{1}e^{-iE_{1}t/\hbar}+E_{1}a_{1}e^{-iE_{1}t/\hbar})|1\rangle+(i\hbar\dot{a}_{2}e^{-iE_{2}t/\hbar}+E_{2}a_{2}e^{-iE_{2}t/\hbar})|2\rangle=a_{1}e^{-iE_{1}t/\hbar}(E_{1}|1\rangle+\gamma e^{-i\omega t}|2\rangle)+a_{2}e^{-iE_{2}t/\hbar}(E_{2}|2\rangle+\gamma e^{i\omega t}|1\rangle)</math>
<math>(i\hbar\dot{a}_{1}e^{-iE_{1}t/\hbar}+E_{1}a_{1}e^{-iE_{1}t/\hbar})|1\rangle+(i\hbar\dot{a}_{2}e^{-iE_{2}t/\hbar}+E_{2}a_{2}e^{-iE_{2}t/\hbar})|2\rangle=a_{1}e^{-iE_{1}t/\hbar}(E_{1}|1\rangle+\gamma e^{-i\omega t}|2\rangle)+a_{2}e^{-iE_{2}t/\hbar}(E_{2}|2\rangle+\gamma e^{i\omega t}|1\rangle)</math>
<math>|1\rangle</math> and <math>|2\rangle</math> are orthogonal


<math>i\hbar\dot{a}_{1}=a_{2}e^{i(E_{1}-E_{2})t/\hbar}\gamma e^{i\omega t}=\gamma e^{i(\omega-\omega_{21})t}a_{2}</math>
<math>i\hbar\dot{a}_{1}=a_{2}e^{i(E_{1}-E_{2})t/\hbar}\gamma e^{i\omega t}=\gamma e^{i(\omega-\omega_{21})t}a_{2}</math>


<math>i\hbar\dot{a}_{2}=a_{1}e^{i(E_{1}-E_{2})t/\hbar}\gamma e^{-i\omega t}=\gamma e^{-i(\omega-\omega_{21})t}a_{1}</math>
<math>i\hbar\dot{a}_{2}=a_{1}e^{i(E_{1}-E_{2})t/\hbar}\gamma e^{-i\omega t}=\gamma e^{-i(\omega-\omega_{21})t}a_{1}</math>
(b)


<math>i\hbar e^{-i(\omega-\omega_{21})t}\dot{a}_{1}=\gamma a_{2}</math>
<math>i\hbar e^{-i(\omega-\omega_{21})t}\dot{a}_{1}=\gamma a_{2}</math>


<math>(\omega-\omega_{21})\hbar e^{-i(\omega-\omega_{21})t}\dot{a}_{1}+i\hbar e^{-i(\omega-\omega_{21})t}\ddot{a}_{1}=\gamma\dot{a}_{2}=\frac{\gamma^{2}}{i\hbar}e^{-i(\omega-\omega_{21})t}a_{1}</math>
<math>(\omega-\omega_{21})\hbar e^{-i(\omega-\omega_{21})t}\dot{a}_{1}+i\hbar e^{-i(\omega-\omega_{21})t}\ddot{a}_{1}=\gamma\dot{a}_{2}=\frac{\gamma^{2}}{i\hbar}e^{-i(\omega-\omega_{21})t}a_{1}</math>
hence


<math>-\hbar^{2}\ddot{a}_{1}+i\hbar^{2}(\omega-\omega_{21})\dot{a}_{1}-\gamma^{2}a_{1}=0<math>
<math>-\hbar^{2}\ddot{a}_{1}+i\hbar^{2}(\omega-\omega_{21})\dot{a}_{1}-\gamma^{2}a_{1}=0<math>

Revision as of 21:50, 29 April 2010

Problem in Time Dependent Perturbation theory: Magnetic Resonance

Consider the Hamiltonian

where , and and are real and positive. At the time assume thatthe lower energy level is populated, i.e. the probability for the level 1 is one and the one for level 2 is zero.

(a) Assuming that the wavefuction of the system is given by

(b) Solve the coupled differential equations obtained in (a). For this purporse reduce the coupled equations to a single second order differential equation for . The solutions are of the form . Obtain the frequencies and .

(c) Determine the coefficients , , and using the initial conditions spedified above. Note that the coefficients are not all independent( and satisfy differential equations).

(d) Obtain the time-dependent probabilities of finding the system in level 1 and in level 2.

(e) Consider the amplitude of the probability of finding the system in state 2 as a function of . What is the resonance condition? Obtain the full width at half maximum of the resonance.

Solution:

(a)

and are orthogonal

(b)

hence