|
|
Line 28: |
Line 28: |
|
| |
|
| <math>(i\hbar\dot{a}_{1}e^{-iE_{1}t/\hbar}+E_{1}a_{1}e^{-iE_{1}t/\hbar})|1\rangle+(i\hbar\dot{a}_{2}e^{-iE_{2}t/\hbar}+E_{2}a_{2}e^{-iE_{2}t/\hbar})|2\rangle=a_{1}e^{-iE_{1}t/\hbar}(E_{1}|1\rangle+\gamma e^{-i\omega t}|2\rangle)+a_{2}e^{-iE_{2}t/\hbar}(E_{2}|2\rangle+\gamma e^{i\omega t}|1\rangle)</math> | | <math>(i\hbar\dot{a}_{1}e^{-iE_{1}t/\hbar}+E_{1}a_{1}e^{-iE_{1}t/\hbar})|1\rangle+(i\hbar\dot{a}_{2}e^{-iE_{2}t/\hbar}+E_{2}a_{2}e^{-iE_{2}t/\hbar})|2\rangle=a_{1}e^{-iE_{1}t/\hbar}(E_{1}|1\rangle+\gamma e^{-i\omega t}|2\rangle)+a_{2}e^{-iE_{2}t/\hbar}(E_{2}|2\rangle+\gamma e^{i\omega t}|1\rangle)</math> |
| | |
| | <math>|1\rangle</math> and <math>|2\rangle</math> are orthogonal |
|
| |
|
| <math>i\hbar\dot{a}_{1}=a_{2}e^{i(E_{1}-E_{2})t/\hbar}\gamma e^{i\omega t}=\gamma e^{i(\omega-\omega_{21})t}a_{2}</math> | | <math>i\hbar\dot{a}_{1}=a_{2}e^{i(E_{1}-E_{2})t/\hbar}\gamma e^{i\omega t}=\gamma e^{i(\omega-\omega_{21})t}a_{2}</math> |
|
| |
|
| <math>i\hbar\dot{a}_{2}=a_{1}e^{i(E_{1}-E_{2})t/\hbar}\gamma e^{-i\omega t}=\gamma e^{-i(\omega-\omega_{21})t}a_{1}</math> | | <math>i\hbar\dot{a}_{2}=a_{1}e^{i(E_{1}-E_{2})t/\hbar}\gamma e^{-i\omega t}=\gamma e^{-i(\omega-\omega_{21})t}a_{1}</math> |
| | |
| | (b) |
|
| |
|
| <math>i\hbar e^{-i(\omega-\omega_{21})t}\dot{a}_{1}=\gamma a_{2}</math> | | <math>i\hbar e^{-i(\omega-\omega_{21})t}\dot{a}_{1}=\gamma a_{2}</math> |
|
| |
|
| <math>(\omega-\omega_{21})\hbar e^{-i(\omega-\omega_{21})t}\dot{a}_{1}+i\hbar e^{-i(\omega-\omega_{21})t}\ddot{a}_{1}=\gamma\dot{a}_{2}=\frac{\gamma^{2}}{i\hbar}e^{-i(\omega-\omega_{21})t}a_{1}</math> | | <math>(\omega-\omega_{21})\hbar e^{-i(\omega-\omega_{21})t}\dot{a}_{1}+i\hbar e^{-i(\omega-\omega_{21})t}\ddot{a}_{1}=\gamma\dot{a}_{2}=\frac{\gamma^{2}}{i\hbar}e^{-i(\omega-\omega_{21})t}a_{1}</math> |
| | |
| | hence |
|
| |
|
| <math>-\hbar^{2}\ddot{a}_{1}+i\hbar^{2}(\omega-\omega_{21})\dot{a}_{1}-\gamma^{2}a_{1}=0<math> | | <math>-\hbar^{2}\ddot{a}_{1}+i\hbar^{2}(\omega-\omega_{21})\dot{a}_{1}-\gamma^{2}a_{1}=0<math> |
Problem in Time Dependent Perturbation theory: Magnetic Resonance
Consider the Hamiltonian
where
, and
and
are real and positive. At the time
assume thatthe lower energy level is populated, i.e. the probability for the level 1 is one and the one for level 2 is zero.
(a) Assuming that the wavefuction of the system is given by
(b) Solve the coupled differential equations obtained in (a). For this purporse reduce the coupled equations to a single second order differential equation for
. The solutions are of the form
. Obtain the frequencies
and
.
(c) Determine the coefficients
,
,
and
using the initial conditions spedified above. Note that the coefficients are not all independent(
and
satisfy differential equations).
(d) Obtain the time-dependent probabilities of finding the system in level 1 and in level 2.
(e) Consider the amplitude of the probability of finding the system in state 2 as a function of
. What is the resonance condition? Obtain the full width at half maximum of the resonance.
Solution:
(a)
and
are orthogonal
(b)
hence