Phy5646/CG coeff example1: Difference between revisions

From PhyWiki
Jump to navigation Jump to search
No edit summary
 
(11 intermediate revisions by one other user not shown)
Line 1: Line 1:
== Find the CG coefficients ==
== Find the CG coefficients ==


<math> 1\rangle : \dfrac{1}{2}\otimes 1 = \dfrac{3}{2}\oplus  \dfrac{1}{2} </math>
<math> 1\rangle : \dfrac{1}{2}\otimes 1 = \dfrac{3}{2}\oplus  \dfrac{1}{2} </math> <math>\left [ Shankar excercise: 15.2.2 \right ]</math>


'''Answer'''
'''Answer'''
Line 12: Line 12:
The state <math>|\dfrac{3}{2},\dfrac{3}{2} \rangle</math> is given by,
The state <math>|\dfrac{3}{2},\dfrac{3}{2} \rangle</math> is given by,


<math>|\dfrac{1}{2}, 1, \dfrac{3}{2},\dfrac{3}{2}\rangle</math> = <math>|\dfrac{1}{2}, 1, \dfrac{1}{2},1\rangle</math>
<math>|\dfrac{1}{2}, 1, \dfrac{3}{2},\dfrac{3}{2}\rangle</math> = <math>|\dfrac{1}{2}, 1, \dfrac{1}{2},1\rangle</math>


Corresponding CG coefficient, <math>\langle\dfrac{1}{2}, 1, \dfrac{1}{2},\dfrac{1}{2}</math> <math>|\dfrac{1}{2}, 1, \dfrac{3}{2},\dfrac{3}{2}\rangle</math> = 1
Corresponding CG coefficient, <math>\langle\dfrac{1}{2}, 1, \dfrac{1}{2},\dfrac{1}{2}</math> <math>|\dfrac{1}{2}, 1, \dfrac{3}{2},\dfrac{3}{2}\rangle</math> = 1
Line 33: Line 33:
<math> (J_{1-} +J_{2-})|\dfrac{1}{2}, 1, \dfrac{1}{2},1\rangle</math> = <math>\hbar |\dfrac{1}{2}, 1, -\dfrac{1}{2},1\rangle</math> + <math>\hbar \sqrt{2} |\dfrac{1}{2}, 1, \dfrac{1}{2},0\rangle</math>
<math> (J_{1-} +J_{2-})|\dfrac{1}{2}, 1, \dfrac{1}{2},1\rangle</math> = <math>\hbar |\dfrac{1}{2}, 1, -\dfrac{1}{2},1\rangle</math> + <math>\hbar \sqrt{2} |\dfrac{1}{2}, 1, \dfrac{1}{2},0\rangle</math>


<math> J_{-} |\dfrac{1}{2}, 1, \dfrac{3}{2},\dfrac{1}{2}\rangle</math>
<math> |\dfrac{1}{2}, 1, \dfrac{3}{2},\dfrac{1}{2}\rangle</math> = <math>\sqrt{\frac{1}{3}} |\dfrac{1}{2}, 1, -\dfrac{1}{2},1\rangle</math> + <math>\sqrt{\frac{2}{3}} |\dfrac{1}{2}, 1, \dfrac{1}{2},0\rangle</math>
 
CG coefficients:
 
<math>\langle \dfrac{1}{2}, 1, -\dfrac{1}{2},1</math> <math> |\dfrac{1}{2}, 1, \dfrac{3}{2},\dfrac{1}{2}\rangle</math> = <math>\sqrt{\frac{1}{3}}</math>
 
<math>\langle \dfrac{1}{2}, 1, \dfrac{1}{2},0</math> <math> |\dfrac{1}{2}, 1, \dfrac{3}{2},\dfrac{1}{2}\rangle</math> = <math>\sqrt{\frac{2}{3}}</math>
 
Similarly by repeated application of <math>J_{-}</math> and <math>J_{1-}</math>,<math>J_{2-}</math> on <math> |\dfrac{1}{2}, 1, \dfrac{3}{2},\dfrac{1}{2}\rangle</math> we get,
 
<math> J_{-}|\dfrac{1}{2}, 1, \dfrac{3}{2},\dfrac{1}{2}\rangle</math>= <math>2\hbar |\dfrac{1}{2}, 1, \dfrac{3}{2},-\dfrac{1}{2}\rangle</math>
 
and <math> (J_{1-}+ J_{-})|\dfrac{1}{2}, 1, \dfrac{3}{2},\dfrac{1}{2}\rangle</math>= <math>(J_{1-}+ J_{-}) \left [\sqrt{\frac{1}{3}} |\dfrac{1}{2}, 1, -\dfrac{1}{2},1\rangle + \sqrt{\frac{2}{3}} |\dfrac{1}{2}, 1, \dfrac{1}{2},0\rangle  \right ]</math>
 
<math> (J_{1-}+ J_{2-})|\dfrac{1}{2}, 1, \dfrac{3}{2},\dfrac{1}{2}\rangle</math>= <math>2\sqrt{\frac{2}{3}} |\dfrac{1}{2}, 1, -\dfrac{1}{2},0\rangle + 2\sqrt{\frac{1}{3}} |\dfrac{1}{2}, 1, \dfrac{1}{2},-1\rangle </math>
 
<math> |\dfrac{1}{2}, 1, \dfrac{3}{2},-\dfrac{1}{2}\rangle</math>= <math>\sqrt{\frac{2}{3}} |\dfrac{1}{2}, 1, -\dfrac{1}{2},0\rangle + \sqrt{\frac{1}{3}} |\dfrac{1}{2}, 1, \dfrac{1}{2},-1\rangle </math>
 
CG coefficients:
 
<math>\langle \dfrac{1}{2}, 1, -\dfrac{1}{2},0 |\dfrac{1}{2}, 1, \dfrac{3}{2},-\dfrac{1}{2}\rangle</math>= <math>\sqrt{\frac{2}{3}} </math>
 
 
<math>\langle \dfrac{1}{2}, 1, \dfrac{1}{2},-1 |\dfrac{1}{2}, 1, \dfrac{3}{2},-\dfrac{1}{2}\rangle</math>= <math>\sqrt{\frac{1}{3}} </math>
 
Again by repeated application of <math>J_{-}</math> and <math>J_{1-}</math>,<math>J_{2-}</math>
 
<math> J_{-}|\dfrac{1}{2}, 1, \dfrac{3}{2},-\dfrac{1}{2}\rangle</math>= <math>\hbar\sqrt{3} |\dfrac{1}{2}, 1, \dfrac{3}{2},-\dfrac{3}{2}\rangle </math>
 
<math>(J_{1-}+ J_{2-})\left [\sqrt{\frac{2}{3}} |\dfrac{1}{2}, 1, -\dfrac{1}{2},0\rangle + \sqrt{\frac{1}{3}} |\dfrac{1}{2}, 1, \dfrac{1}{2},-1\rangle  \right ] </math>= <math>\hbar\sqrt{3} |\dfrac{1}{2}, 1, -\dfrac{1}{2},-1\rangle </math>
 
CG coefficients:
 
<math>\langle\dfrac{1}{2}, 1, -\dfrac{1}{2},-1</math> <math>|\dfrac{1}{2}, 1, \dfrac{3}{2},-\dfrac{3}{2}\rangle </math> = 1
 
'''Eigenvectors <math>|j m \rangle</math>  associated with <math>j= \dfrac{1}{2}</math>''':
 
<math>|\dfrac{1}{2}, 1, \dfrac{1}{2},\dfrac{1}{2}\rangle</math>= <math> a|\dfrac{1}{2}, 1, \dfrac{1}{2},0\rangle </math> <math> +b|\dfrac{1}{2}, 1, -\dfrac{1}{2},1\rangle </math>
 
where, <math> a</math> <math>= \langle\dfrac{1}{2}, 1, \dfrac{1}{2},\dfrac{1}{2}|\dfrac{1}{2}, 1, \dfrac{1}{2},0\rangle </math>
 
<math> b</math> <math>= \langle\dfrac{1}{2}, 1, \dfrac{1}{2},\dfrac{1}{2}|\dfrac{1}{2}, 1, -\dfrac{1}{2},1\rangle </math>
 
Therefore ,<math>\langle\dfrac{1}{2}, 1, \dfrac{1}{2},\dfrac{1}{2}</math><math>|\dfrac{1}{2}, 1, \dfrac{1}{2},\dfrac{1}{2}\rangle</math> = <math> a^{2} + b^{2} = 1</math>
 
Since, <math>|\dfrac{1}{2}, 1, \dfrac{3}{2},\dfrac{1}{2}\rangle</math> and <math>|\dfrac{1}{2}, 1, \dfrac{1}{2},\dfrac{1}{2}\rangle</math> are orthogonal to each other, <math>\langle\dfrac{1}{2}, 1, \dfrac{3}{2},\dfrac{1}{2}</math><math>|\dfrac{1}{2}, 1, \dfrac{1}{2},\dfrac{1}{2}\rangle</math> = <math> a\sqrt{\frac{2}{3}} + b\sqrt{\frac{1}{3}} = 0</math>
 
<math>|\dfrac{1}{2}, 1, \dfrac{1}{2},\dfrac{1}{2}\rangle</math>= <math> -\sqrt{\frac{1}{3}}|\dfrac{1}{2}, 1, \dfrac{1}{2},0\rangle </math> <math> +\sqrt{\frac{2}{3}}|\dfrac{1}{2}, 1, -\dfrac{1}{2},1\rangle </math>
 
CG coefficients:
 
<math>\langle\dfrac{1}{2}, 1, \dfrac{1}{2},0</math><math>|\dfrac{1}{2}, 1, \dfrac{1}{2},\dfrac{1}{2}\rangle</math>= <math> -\sqrt{\frac{1}{3}}</math>
 
<math>\langle\dfrac{1}{2}, 1, -\dfrac{1}{2},1</math><math>|\dfrac{1}{2}, 1, \dfrac{1}{2},\dfrac{1}{2}\rangle</math>= <math> \sqrt{\frac{2}{3}}</math>
 
Again by repeated application of <math>J_{-}</math> and <math>J_{1-}</math>,<math>J_{2-}</math>
 
<math>J_{-}|\dfrac{1}{2}, 1, \dfrac{1}{2},\dfrac{1}{2}\rangle</math>= <math> \hbar|\dfrac{1}{2}, 1, \dfrac{1}{2},-\dfrac{1}{2}\rangle </math>
 
<math> (J_{1-}+ J_{2-})\left [-\sqrt{\frac{1}{3}}|\dfrac{1}{2}, 1, \dfrac{1}{2},0\rangle +\sqrt{\frac{2}{3}}|\dfrac{1}{2}, 1, -\dfrac{1}{2},1\rangle  \right ] </math> = <math>\hbar \left [\sqrt{\frac{1}{3}}|\dfrac{1}{2}, 1, -\dfrac{1}{2},0\rangle - \sqrt{\frac{2}{3}}|\dfrac{1}{2}, 1, \dfrac{1}{2},-1\rangle  \right ]</math>
 
<math> |\dfrac{1}{2}, 1, \dfrac{1}{2},-\dfrac{1}{2}\rangle </math>  = <math> \left [\sqrt{\frac{1}{3}}|\dfrac{1}{2}, 1, -\dfrac{1}{2},0\rangle - \sqrt{\frac{2}{3}}|\dfrac{1}{2}, 1, \dfrac{1}{2},-1\rangle  \right ]</math>
 
CG coefficients:
 
<math>\langle\dfrac{1}{2}, 1, -\dfrac{1}{2},0 |\dfrac{1}{2}, 1, \dfrac{1}{2},-\dfrac{1}{2}\rangle </math>  = <math> \sqrt{\frac{1}{3}}</math>
 
<math>\langle\dfrac{1}{2}, 1, \dfrac{1}{2}, -1|\dfrac{1}{2}, 1, \dfrac{1}{2},-\dfrac{1}{2}\rangle </math>  = <math> -\sqrt{\frac{1}{3}}</math>
 
This completes the analysis :o)

Latest revision as of 22:20, 30 April 2010

Find the CG coefficients

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1\rangle : \dfrac{1}{2}\otimes 1 = \dfrac{3}{2}\oplus \dfrac{1}{2} } Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left [ Shankar excercise: 15.2.2 \right ]}

Answer

The addition of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j_1=s=\frac{1}{2}} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j_2=l=1} is encountered, for example, in the p-state of an electron. This state is characterised by orbital quantum number Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j_1=s=\frac{1}{2}} and spin quantum number Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j_2=l=1} . Obviously the possible values of magnetic quantum number for Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j_1=s=\frac{1}{2}} are Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle m_s = \frac{1}{2},-\frac{1}{2}} and those for Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j_2=l=1} are Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle m_l = 1,0,-1} . The allowed values of the total angular momentum are between Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |j_1 - j_2| \le j \le j_1 + j_2 } hence Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j = \frac{3}{2},\frac{1}{2}} . To calculate the relevant Clebsch–Gordan coefficients, we have to express the basis vectors Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |j m j_1 j_2\rangle} in terms of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |\dfrac{1}{2}, 1, m_1 m_2\rangle}

Eigenvectors Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |j m \rangle} associated with Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j= \dfrac{3}{2}} :

The state Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |\dfrac{3}{2},\dfrac{3}{2} \rangle} is given by,

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |\dfrac{1}{2}, 1, \dfrac{3}{2},\dfrac{3}{2}\rangle} = Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |\dfrac{1}{2}, 1, \dfrac{1}{2},1\rangle}

Corresponding CG coefficient, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \langle\dfrac{1}{2}, 1, \dfrac{1}{2},\dfrac{1}{2}} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |\dfrac{1}{2}, 1, \dfrac{3}{2},\dfrac{3}{2}\rangle} = 1

Now Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |\dfrac{1}{2}, 1, \dfrac{3}{2},\dfrac{1}{2}\rangle} can be found by

Applying Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle J_{-} } to Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |\dfrac{1}{2}, 1, \dfrac{3}{2},\dfrac{3}{2}\rangle} and

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (J_{1-} +J_{2-})} to Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |\dfrac{1}{2}, 1, \dfrac{1}{2},1\rangle} and the equating the two results,

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle J_{-}|\dfrac{1}{2}, 1, \dfrac{3}{2},\dfrac{3}{2}\rangle} = Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (J_{1-} +J_{2-})|\dfrac{1}{2}, 1, \dfrac{1}{2},1\rangle}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle J_{-} |\dfrac{1}{2}, 1, \dfrac{3}{2},\dfrac{3}{2}\rangle} = Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hbar \sqrt{\frac{3}{2}\left ( \frac{3}{2}+1 \right )-\frac{3}{2}\left ( \frac{3}{2}-1 \right )}|\dfrac{1}{2}, 1, \dfrac{3}{2},\dfrac{1}{2}\rangle}

or Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle J_{-} |\dfrac{1}{2}, 1, \dfrac{3}{2},\dfrac{3}{2}\rangle} = Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hbar \sqrt{3}|\dfrac{1}{2}, 1, \dfrac{3}{2},\dfrac{1}{2}\rangle}

Now Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (J_{1-} +J_{2-})|\dfrac{1}{2}, 1, \dfrac{1}{2},1\rangle} = Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hbar \sqrt{\frac{1}{2}\left ( \frac{1}{2}+1 \right )-\frac{1}{2}\left ( \frac{1}{2}-1 \right )} |\dfrac{1}{2}, 1, -\dfrac{1}{2},1\rangle} + Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hbar \sqrt{1\left ( 1+1 \right )-1\left ( 1-1 \right )} |\dfrac{1}{2}, 1, \dfrac{1}{2},0\rangle}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (J_{1-} +J_{2-})|\dfrac{1}{2}, 1, \dfrac{1}{2},1\rangle} = Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hbar |\dfrac{1}{2}, 1, -\dfrac{1}{2},1\rangle} + Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hbar \sqrt{2} |\dfrac{1}{2}, 1, \dfrac{1}{2},0\rangle}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |\dfrac{1}{2}, 1, \dfrac{3}{2},\dfrac{1}{2}\rangle} = Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sqrt{\frac{1}{3}} |\dfrac{1}{2}, 1, -\dfrac{1}{2},1\rangle} + Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sqrt{\frac{2}{3}} |\dfrac{1}{2}, 1, \dfrac{1}{2},0\rangle}

CG coefficients:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \langle \dfrac{1}{2}, 1, -\dfrac{1}{2},1} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |\dfrac{1}{2}, 1, \dfrac{3}{2},\dfrac{1}{2}\rangle} = Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sqrt{\frac{1}{3}}}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \langle \dfrac{1}{2}, 1, \dfrac{1}{2},0} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |\dfrac{1}{2}, 1, \dfrac{3}{2},\dfrac{1}{2}\rangle} = Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sqrt{\frac{2}{3}}}

Similarly by repeated application of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle J_{-}} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle J_{1-}} ,Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle J_{2-}} on Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |\dfrac{1}{2}, 1, \dfrac{3}{2},\dfrac{1}{2}\rangle} we get,

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle J_{-}|\dfrac{1}{2}, 1, \dfrac{3}{2},\dfrac{1}{2}\rangle} = Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2\hbar |\dfrac{1}{2}, 1, \dfrac{3}{2},-\dfrac{1}{2}\rangle}

and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (J_{1-}+ J_{-})|\dfrac{1}{2}, 1, \dfrac{3}{2},\dfrac{1}{2}\rangle} = Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (J_{1-}+ J_{-}) \left [\sqrt{\frac{1}{3}} |\dfrac{1}{2}, 1, -\dfrac{1}{2},1\rangle + \sqrt{\frac{2}{3}} |\dfrac{1}{2}, 1, \dfrac{1}{2},0\rangle \right ]}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (J_{1-}+ J_{2-})|\dfrac{1}{2}, 1, \dfrac{3}{2},\dfrac{1}{2}\rangle} = Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2\sqrt{\frac{2}{3}} |\dfrac{1}{2}, 1, -\dfrac{1}{2},0\rangle + 2\sqrt{\frac{1}{3}} |\dfrac{1}{2}, 1, \dfrac{1}{2},-1\rangle }

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |\dfrac{1}{2}, 1, \dfrac{3}{2},-\dfrac{1}{2}\rangle} = Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sqrt{\frac{2}{3}} |\dfrac{1}{2}, 1, -\dfrac{1}{2},0\rangle + \sqrt{\frac{1}{3}} |\dfrac{1}{2}, 1, \dfrac{1}{2},-1\rangle }

CG coefficients:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \langle \dfrac{1}{2}, 1, -\dfrac{1}{2},0 |\dfrac{1}{2}, 1, \dfrac{3}{2},-\dfrac{1}{2}\rangle} = Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sqrt{\frac{2}{3}} }


Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \langle \dfrac{1}{2}, 1, \dfrac{1}{2},-1 |\dfrac{1}{2}, 1, \dfrac{3}{2},-\dfrac{1}{2}\rangle} = Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sqrt{\frac{1}{3}} }

Again by repeated application of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle J_{-}} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle J_{1-}} ,Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle J_{2-}}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle J_{-}|\dfrac{1}{2}, 1, \dfrac{3}{2},-\dfrac{1}{2}\rangle} = Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hbar\sqrt{3} |\dfrac{1}{2}, 1, \dfrac{3}{2},-\dfrac{3}{2}\rangle }

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (J_{1-}+ J_{2-})\left [\sqrt{\frac{2}{3}} |\dfrac{1}{2}, 1, -\dfrac{1}{2},0\rangle + \sqrt{\frac{1}{3}} |\dfrac{1}{2}, 1, \dfrac{1}{2},-1\rangle \right ] } = Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hbar\sqrt{3} |\dfrac{1}{2}, 1, -\dfrac{1}{2},-1\rangle }

CG coefficients:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \langle\dfrac{1}{2}, 1, -\dfrac{1}{2},-1} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |\dfrac{1}{2}, 1, \dfrac{3}{2},-\dfrac{3}{2}\rangle } = 1

Eigenvectors Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |j m \rangle} associated with Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j= \dfrac{1}{2}} :

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |\dfrac{1}{2}, 1, \dfrac{1}{2},\dfrac{1}{2}\rangle} = Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a|\dfrac{1}{2}, 1, \dfrac{1}{2},0\rangle } Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle +b|\dfrac{1}{2}, 1, -\dfrac{1}{2},1\rangle }

where, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle = \langle\dfrac{1}{2}, 1, \dfrac{1}{2},\dfrac{1}{2}|\dfrac{1}{2}, 1, \dfrac{1}{2},0\rangle }

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle b} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle = \langle\dfrac{1}{2}, 1, \dfrac{1}{2},\dfrac{1}{2}|\dfrac{1}{2}, 1, -\dfrac{1}{2},1\rangle }

Therefore ,Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \langle\dfrac{1}{2}, 1, \dfrac{1}{2},\dfrac{1}{2}} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |\dfrac{1}{2}, 1, \dfrac{1}{2},\dfrac{1}{2}\rangle} = Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a^{2} + b^{2} = 1}

Since, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |\dfrac{1}{2}, 1, \dfrac{3}{2},\dfrac{1}{2}\rangle} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |\dfrac{1}{2}, 1, \dfrac{1}{2},\dfrac{1}{2}\rangle} are orthogonal to each other, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \langle\dfrac{1}{2}, 1, \dfrac{3}{2},\dfrac{1}{2}} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |\dfrac{1}{2}, 1, \dfrac{1}{2},\dfrac{1}{2}\rangle} = Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a\sqrt{\frac{2}{3}} + b\sqrt{\frac{1}{3}} = 0}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |\dfrac{1}{2}, 1, \dfrac{1}{2},\dfrac{1}{2}\rangle} = Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\sqrt{\frac{1}{3}}|\dfrac{1}{2}, 1, \dfrac{1}{2},0\rangle } Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle +\sqrt{\frac{2}{3}}|\dfrac{1}{2}, 1, -\dfrac{1}{2},1\rangle }

CG coefficients:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \langle\dfrac{1}{2}, 1, \dfrac{1}{2},0} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |\dfrac{1}{2}, 1, \dfrac{1}{2},\dfrac{1}{2}\rangle} = Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\sqrt{\frac{1}{3}}}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \langle\dfrac{1}{2}, 1, -\dfrac{1}{2},1} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |\dfrac{1}{2}, 1, \dfrac{1}{2},\dfrac{1}{2}\rangle} = Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sqrt{\frac{2}{3}}}

Again by repeated application of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle J_{-}} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle J_{1-}} ,

=

=

=

CG coefficients:

=

=

This completes the analysis :o)