Photoelectric Example: Difference between revisions

From PhyWiki
Jump to navigation Jump to search
No edit summary
No edit summary
 
(5 intermediate revisions by the same user not shown)
Line 1: Line 1:
''Source:'' "Theory and problems of Modern Physics", Ronald Gautreau,Problem 9.13
The work function is


'''Problem:''' The emitter in a photoelectric tube has a threshold wavelength of <math>6000\,\AA</math>. Determine the wavelength of the light incident on the tube if the stopping potential for this light is 2.5 V.
<math>eW_{0}=h\nu_{th}=\frac{hc}{\lambda }=\frac{12400 \text{ eV}\cdot\AA}{6000\,\AA}=2.07\text{ eV}</math>
 
'''Solution:''' The work function is
 
<math>eW_{0}=h\nu_{th}=\frac{hc}{\lambda }=\frac{1240\times 10^3 \text{ eV}\cdot\AA}{6000\,\AA}=2.07\text{ eV}</math>


The photoelectric equation then gives
The photoelectric equation then gives
Line 11: Line 7:
<math>eV_{s}=h\nu-eW_{0}=\frac{hc}{\lambda}-eW_{0}</math>
<math>eV_{s}=h\nu-eW_{0}=\frac{hc}{\lambda}-eW_{0}</math>


<math>2.5\text{ eV}=\frac{1.24\times 10^3 \text{ eV}\cdot\AA}{\lambda }-2.07\text{ eV}\Rightarrow \lambda =2713\,\AA</math>
<math>2.5\text{ eV}=\frac{12400 \text{ eV}\cdot\AA}{\lambda }-2.07\text{ eV}\Rightarrow \lambda =2713\,\AA</math>
 
Back to [[Photoelectric Effect#Problem|Photoelectric Effect]]

Latest revision as of 13:19, 18 January 2014

The work function is

The photoelectric equation then gives

Back to Photoelectric Effect