Phy5645/Heisenberg Uncertainty Relation 3: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
(9 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
Let | Let us assume that a particle has the wavefunction, | ||
<math>\psi (x)=\left (\frac{\pi }{a}\right )^{-1/4}e^{-ax^{2}/2}.</math> | |||
<math>\ | We now wish to verify the Heisenberg Uncertanity Principle for this case. To do so, we need to find the uncertainties in position and momentum, | ||
<math>\Delta p=\sqrt{\left \langle {p^{2}} \right \rangle -\left \langle {p} \right \rangle ^{2}}</math> | |||
and | and | ||
<math>\ | <math>\Delta x=\sqrt{\left \langle {x^{2}} \right \rangle -\left \langle {x} \right \rangle ^{2}}.</math> | ||
We will calculate the expectation values one by one. | |||
<math> | <math>\langle {x}\rangle=\int\limits_{-\infty}^{\infty} {x\left |{\psi (x)} \right |^{2}\,dx}=\sqrt {\frac{a}{\pi }} \int_{-\infty}^{\infty} xe^{-ax^{2}}\,dx=0 </math> | ||
since the integrand is odd and thus the integral over all space is zero. | |||
<math>\left \langle {x^{2}} \right \rangle=\int_{-\infty }^{\infty } {x^{2}\left |{\psi (x)} \right |^{2}\,dx}=\sqrt {\frac{a}{\pi }} \int_{-\infty}^{\infty} x^{2}e^{-ax^{2}}\,dx=\tfrac{1}{2}\sqrt {\frac{a}{\pi }} \sqrt {\frac{\pi }{a^{3}}} =\frac{1}{2a}</math> | |||
Since the integral is of a Gaussian times a power of <math>x</math>, we are able to use the known results for such integrals. | |||
Similarly to <math>\left \langle {x} \right \rangle, </math> <math>\left \langle {p} \right \rangle=0</math> because the integrand will be an odd function as well. | |||
<math>\left \langle {p^{2}} \right \rangle =\ | <math>\left \langle {p^{2}} \right \rangle=\sqrt {\frac{a}{\pi }} \int {e^{-ax^{2}/2}} \left (\frac{\hbar }{i}\frac{\partial}{\partial x}\right )^{2}e^{-ax^{2}/2}dx</math> | ||
<math>=\sqrt {\frac{a}{\pi }} \int {e^{-ax^{2}/2}} | <math>=\sqrt {\frac{a}{\pi }} (-\hbar ^{2})\int {e^{-ax^{2}/2}} \frac{\partial}{\partial x}\left (-\frac{2ax}{2}e^{-ax^{2}/2}\right )\,dx</math> | ||
<math>=\sqrt {\frac{a}{\pi }} (-\hbar ^{2})\int {e^{-ax^{2}/2}} \frac{ | <math>=\sqrt {\frac{a}{\pi }} (-\hbar ^{2})\int {e^{-ax^{2}/2}} \left \lbrace {-ae^{-ax^{2}/2}+\left ({-\frac{2ax}{2}} \right )\left ({-\frac{2ax}{2}} \right )e^{-ax^{2}/2}} \right \rbrace dx</math> | ||
<math> | <math>=\sqrt {\frac{a}{\pi }} (\hbar ^{2}a)\int {e^{-ax^{2}}} dx\text{ +}\sqrt {\frac{a}{\pi }} (-\hbar ^{2}a^{2})\int {x^{2}e^{-ax^{2}}} dx</math> | ||
<math> | <math>=\sqrt {\frac{a}{\pi }} (\hbar ^{2}a)\sqrt {\frac{\pi }{a}} +\sqrt {\frac{a}{\pi }} (-\hbar ^{2}a^{2})\frac{1}{2}\sqrt {\frac{\pi }{a^{3}}} </math> | ||
<math>\text{=}(\hbar ^{2}a)-\frac{\hbar ^{2}a}{2}=\frac{\hbar ^{2}a}{2}</math> | <math>\text{=}(\hbar ^{2}a)-\frac{\hbar ^{2}a}{2}=\frac{\hbar ^{2}a}{2}</math> | ||
Combining these results, we obtain <math>\Delta p=\hbar\sqrt{\frac{a}{2}}</math> | |||
<math>\ | |||
and | and | ||
<math>\ | <math>\Delta x=\frac{1}{\sqrt{2a}}.</math> | ||
Finally, | |||
<math>\Delta p\,\Delta x =\hbar\sqrt{\frac{a}{2}}\frac{1}{\sqrt{2a}}=\frac{\hbar}{2}.</math> | |||
Back to [[Heisenberg Uncertainty Principle]] | Back to [[Heisenberg Uncertainty Principle#Problems|Heisenberg Uncertainty Principle]] |
Latest revision as of 13:24, 18 January 2014
Let us assume that a particle has the wavefunction,
We now wish to verify the Heisenberg Uncertanity Principle for this case. To do so, we need to find the uncertainties in position and momentum, and
We will calculate the expectation values one by one.
since the integrand is odd and thus the integral over all space is zero.
Since the integral is of a Gaussian times a power of , we are able to use the known results for such integrals.
Similarly to because the integrand will be an odd function as well.
Combining these results, we obtain and
Finally,
Back to Heisenberg Uncertainty Principle