Phy5645/Heisenberg Uncertainty Relation 3: Difference between revisions

From PhyWiki
Jump to navigation Jump to search
No edit summary
No edit summary
 
(7 intermediate revisions by the same user not shown)
Line 8: Line 8:
<math>\Delta x=\sqrt{\left \langle {x^{2}} \right \rangle -\left \langle {x} \right \rangle ^{2}}.</math>
<math>\Delta x=\sqrt{\left \langle {x^{2}} \right \rangle -\left \langle {x} \right \rangle ^{2}}.</math>


Lets start by calculating the expectation values one by one.  
We will calculate the expectation values one by one.  


<math>\langle {x}\rangle =\left \langle {\Psi \left |{x} \right |\Psi } \right \rangle =\int\limits_{-\infty}^{\infty} {x\left |{\Psi (x)} \right |^{2}\,dx}=\sqrt {\frac{a}{\pi }} \int_{-\infty}^{\infty} xe^{-ax^{2}}\,dx=0 </math>
<math>\langle {x}\rangle=\int\limits_{-\infty}^{\infty} {x\left |{\psi (x)} \right |^{2}\,dx}=\sqrt {\frac{a}{\pi }} \int_{-\infty}^{\infty} xe^{-ax^{2}}\,dx=0 </math>


since the integrand is odd and thus the integral over all space is zero.  
since the integrand is odd and thus the integral over all space is zero.  


<math>\left \langle {x^{2}} \right \rangle =\left \langle {\Psi \left |{x^{2}} \right |\Psi } \right \rangle </math>
<math>\left \langle {x^{2}} \right \rangle=\int_{-\infty }^{\infty } {x^{2}\left |{\psi (x)} \right |^{2}\,dx}=\sqrt {\frac{a}{\pi }} \int_{-\infty}^{\infty} x^{2}e^{-ax^{2}}\,dx=\tfrac{1}{2}\sqrt {\frac{a}{\pi }} \sqrt {\frac{\pi }{a^{3}}} =\frac{1}{2a}</math>
<math>=\int\limits_{-\infty }^{\infty } {x^{2}\left |{\Psi (x)} \right |^{2}\,dx}=\sqrt {\frac{a}{\pi }} \int_{-\infty}^{\infty} x^{2}e^{-ax^{2}}\,dx=\tfrac{1}{2}\sqrt {\frac{a}{\pi }} \sqrt {\frac{\pi }{a^{3}}} =\frac{1}{2a}</math>


Since the integral is of a Gaussian times a power of <math>x</math>, we are able to use the known results for such integrals.  
Since the integral is of a Gaussian times a power of <math>x</math>, we are able to use the known results for such integrals.  


Similarly to <math>\left \langle {x} \right \rangle, </math> <math>\left \langle {p} \right \rangle =\left \langle {\Psi \left |{p} \right |\Psi } \right \rangle =0</math> because the integrand will be an odd function as well.  
Similarly to <math>\left \langle {x} \right \rangle, </math> <math>\left \langle {p} \right \rangle=0</math> because the integrand will be an odd function as well.  


<math>\left \langle {p^{2}} \right \rangle =\left \langle {\Psi \left |{p^{2}} \right |\Psi } \right \rangle </math>
<math>\left \langle {p^{2}} \right \rangle=\sqrt {\frac{a}{\pi }} \int {e^{-ax^{2}/2}} \left (\frac{\hbar }{i}\frac{\partial}{\partial x}\right )^{2}e^{-ax^{2}/2}dx</math>
 
<math>=\sqrt {\frac{a}{\pi }} \int {e^{-ax^{2}/2}} \left (\frac{\hbar }{i}\frac{\partial}{\partial x}\right )^{2}e^{-ax^{2}/2}dx</math>


<math>=\sqrt {\frac{a}{\pi }} (-\hbar ^{2})\int {e^{-ax^{2}/2}} \frac{\partial}{\partial x}\left (-\frac{2ax}{2}e^{-ax^{2}/2}\right )\,dx</math>
<math>=\sqrt {\frac{a}{\pi }} (-\hbar ^{2})\int {e^{-ax^{2}/2}} \frac{\partial}{\partial x}\left (-\frac{2ax}{2}e^{-ax^{2}/2}\right )\,dx</math>
Line 37: Line 34:
Combining these results, we obtain <math>\Delta p=\hbar\sqrt{\frac{a}{2}}</math>
Combining these results, we obtain <math>\Delta p=\hbar\sqrt{\frac{a}{2}}</math>
and  
and  
<math>\Delta x=\frac{1}{\sqrt{2a}}</math>
<math>\Delta x=\frac{1}{\sqrt{2a}}.</math>


finally,
Finally,


<math>\Delta p\,\Delta x =\hbar\sqrt{\frac{a}{2}}\frac{1}{\sqrt{2a}} =\sqrt {\frac{\hbar ^{2}}{4}} =\frac{\hbar }{2}</math>.
<math>\Delta p\,\Delta x =\hbar\sqrt{\frac{a}{2}}\frac{1}{\sqrt{2a}}=\frac{\hbar}{2}.</math>


Back to [[Heisenberg Uncertainty Principle]]
Back to [[Heisenberg Uncertainty Principle#Problems|Heisenberg Uncertainty Principle]]

Latest revision as of 13:24, 18 January 2014

Let us assume that a particle has the wavefunction,

We now wish to verify the Heisenberg Uncertanity Principle for this case. To do so, we need to find the uncertainties in position and momentum, and

We will calculate the expectation values one by one.

since the integrand is odd and thus the integral over all space is zero.

Since the integral is of a Gaussian times a power of , we are able to use the known results for such integrals.

Similarly to because the integrand will be an odd function as well.

Combining these results, we obtain and

Finally,

Back to Heisenberg Uncertainty Principle