Phy5645/Free particle SE problem: Difference between revisions

From PhyWiki
Jump to navigation Jump to search
No edit summary
No edit summary
 
(6 intermediate revisions by the same user not shown)
Line 1: Line 1:
Submitted by team 1
'''(a)''' The plane wave, <math> \psi = e^{ikz},\!</math> does not depend on <math> x\!</math> or <math> y\!</math>. Therefore, the Schrödinger equation becomes <math> \left( \frac{d^2}{dz^2} + k^2 \right) \psi = 0 \!</math>. We may easily see that this is a solution to the equation:
 
------
 
'''Question: A free particle Schrodinger Equation'''
 
Time-independent Schrodinger equation for a free particle is given by
:<math>
\frac{1}{2m} \left( \frac{\hbar}{i} \frac{\partial}{\partial \mathbf{r}} \right)^2 \psi \left(\mathbf{r} \right) = E \psi\left(\mathbf{r} \right)
</math>
 
It is customary to write <math> E = \frac{\hbar^2 k^2}{2m} \!</math> to simplify the equation
:<math>
\left( \nabla^2 + k^2 \right) \psi \left( \mathbf{r} \right) = 0.
</math>
 
Show that (a) a plane wave <math> \psi\left(\mathbf{r} \right) = e^{ikz} \!</math>, and (b) a spherical wave <math> \psi\left(\mathbf{r} \right) = \frac{e^{ikr}}{r} \! </math> where <math> r = \sqrt{x^2 + y^2 + z^2} \! </math>, satisfy the equation. (In either case, the wave length of the solution is given by <math> \lambda = \frac{2\pi}{k} \!</math> and the momentum by de Broghie's relation <math> p = \hbar k \! </math>. )
 
--------
 
'''Answer:'''
 
(a) Plane wave <math> \psi = e^{ikz} \! </math> does not depend on <math> x \!</math> or <math> y \!</math>. Therefore the Schrodinger equation becomes <math> \left( \partial_z^2 + k^2 \right) \psi = 0 \!</math>. Obviously this is a solution to the equation of
:<math>
:<math>
\frac{\partial^2}{\partial z^2} \left( e^{ikz} \right) + k^2 e^{ikz} = 0.
\frac{d^2}{dz^2} \left( e^{ikz} \right) + k^2 e^{ikz} = 0.
</math>
</math>


(b) In polar coordinates, the Laplacian can be rewritten as
'''(b)''' In spherical coordinates, the Laplacian is given by
:<math>
:<math>
\nabla^2 = \partial_{r}^2 + \frac{2}{r} \partial_r + \frac{1}{r^2} \partial_{\theta}^2 + \frac{\cos\theta}{r^2 \sin\theta} \partial_{\theta} + \frac{1}{r^2 \sin^2\theta} \partial_{\phi}^2 .  
\nabla^2 = \partial_{r}^2 + \frac{2}{r} \partial_r + \frac{1}{r^2} \partial_{\theta}^2 + \frac{\cot\theta}{r^2} \partial_{\theta} + \frac{1}{r^2 \sin^2\theta} \partial_{\phi}^2 .  
</math>
</math>


The spherical wave <math> \psi = \frac{ikr}{r} \! </math> does not depend on <math> \theta \!</math> or <math> \phi \!</math>. Therefore, the Schrodinger equation becomes  
The spherical wave <math> \psi = \frac{e^{ikr}}{r} \! </math> does not depend on <math> \theta \!</math> or <math> \phi \!</math>. Therefore, the Schrödinger equation becomes  
:<math>
:<math>
\left( \partial_r^2 + \frac{2}{r} \partial_r + k^2 \right) \psi = 0  
\left( \frac{d^2}{dr^2} + \frac{2}{r} \frac{d}{dr} + k^2 \right) \psi = 0  
</math>
</math>
:<math>
:<math>
  \Rightarrow \frac{\partial^2}{\partial r^2} \left( \frac{e^{ikr}}{r} \right) + \frac{2}{r} \frac{\partial}{\partial r} \left( \frac{e^{ikr}}{r} \right) + k^2 \frac{e^{ikr}}{r} = \frac{2e^{ikr}}{r^3} - \frac{2ike^{ikr}}{r^2} + \frac{2}{r} \left( -\frac{e^{ikr}}{r^2} + \frac{ike^{ikr}}{r} \right) = 0.  
  \Rightarrow \frac{d^2}{dr^2} \left( \frac{e^{ikr}}{r} \right) + \frac{2}{r} \frac{d}{dr} \left( \frac{e^{ikr}}{r} \right) + k^2 \frac{e^{ikr}}{r} = \frac{2e^{ikr}}{r^3} - \frac{2ike^{ikr}}{r^2} + \frac{2}{r} \left( -\frac{e^{ikr}}{r^2} + \frac{ike^{ikr}}{r} \right) = 0.  
</math>
</math>


Back to [[Stationary States]]
Back to [[Stationary States#Problem|Stationary States]]

Latest revision as of 13:22, 18 January 2014

(a) The plane wave, does not depend on or . Therefore, the Schrödinger equation becomes . We may easily see that this is a solution to the equation:

(b) In spherical coordinates, the Laplacian is given by

The spherical wave does not depend on or . Therefore, the Schrödinger equation becomes

Back to Stationary States