Phy5645/AngularMomentumProblem: Difference between revisions

From PhyWiki
Jump to navigation Jump to search
No edit summary
No edit summary
 
(One intermediate revision by the same user not shown)
Line 17: Line 17:
<math>P(\hbar)=|\langle 1,1|\psi\rangle|^2=\tfrac{1}{5}.</math>
<math>P(\hbar)=|\langle 1,1|\psi\rangle|^2=\tfrac{1}{5}.</math>


Now we will calculate the uncertainties <math>\Delta L_x</math> and <math>\Delta L_y</math> and the product <math>\Delta L_x \Delta L_y</math>
Back to [[Orbital Angular Momentum Eigenfunctions#Problem|Orbital Angular Momentum Eigenfunctions]]
 
After measuring <math>l_z=-\hbar</math> the system will be in the eigenstate <math>|lm>=|1,-1></math>, that is <math>\psi(\theta,\phi)=Y_1,_-1(\theta,|\phi)</math>.  We will first calculate the expectation values of <math>L_x, L_y, L^2_x, L^2_y</math> using <math>|1,-1></math>.  Symmetry requires <math><1,-1|L_x|1,-1>=<1,-1|L_y|1,-1>=0</math>.  Using the relation <math>l-1</math> and <math>m=-1</math>;
 
<math><L^2_x>=<L^2_y>=1/2[<L^2>-<L^2_z>]=\hbar^2/2[l(l+1)-m^2]=\hbar^2/2</math>
 
<math>\Delta L_x=\sqrt{<L^2_x>}=\hbar/\sqrt{2}=\Delta L_y</math>
 
Therefore;
 
<math>\Delta L_x \Delta L_y=\sqrt{<L^2_x><L^2_y>}=\hbar^2/2</math>
 
Back to [[Orbital Angular Momentum Eigenfunctions]]

Latest revision as of 13:40, 18 January 2014

We first rewrite the wave vector in Dirac notation:

We see that the possible results for a measurement of are and

The probablity for obtaining is

Similarly, the probablites of obtaining and are

and

Back to Orbital Angular Momentum Eigenfunctions