Phy5645/AngularMomentumExercise: Difference between revisions

From PhyWiki
Jump to navigation Jump to search
No edit summary
No edit summary
 
(One intermediate revision by the same user not shown)
Line 27: Line 27:
<math>\alpha\approx\sqrt{\frac{\hbar}{L}}.</math>
<math>\alpha\approx\sqrt{\frac{\hbar}{L}}.</math>


If we now substitute in <math>\ L = 4.83\times 10^{31} \text{J}\cdot\text{s}</math> and <math>\ \hbar = 1.055 \times 10^{-34} \text{J} \cdot \text{s},</math> we obtain
If we now substitute in <math>\ L = 4.83\times 10^{31}\,\text{J}\cdot\text{s}</math> and <math>\ \hbar = 1.055 \times 10^{-34}\,\text{J} \cdot \text{s},</math> we obtain


<math>\ \alpha \approx \sqrt{\frac{1.055\times 10^{-34}}{4.83\times 10^{31}}}\approx 1.48 \times 10^{-33} rad.</math>
<math>\ \alpha \approx \sqrt{\frac{1.055\times 10^{-34}}{4.83\times 10^{31}}}\approx 1.48 \times 10^{-33}\,\text{rad}.</math>


This is the smallest angle that <math>\mathbf{L}</math> can make with the <math>z\!</math> axis in the case of the Earth going around the sun.
This is the smallest angle that <math>\mathbf{L}</math> can make with the <math>z\!</math> axis in the case of the Earth going around the sun.
Line 39: Line 39:
which gives us
which gives us


<math>\ \alpha \approx 0.464 rad = 26.6 \deg. </math>
<math>\ \alpha \approx 0.464\,\text{rad} = 26.6 \deg. </math>


This is the smallest angle that the angular momentum vector of a particle with <math>\ l=4 </math> can make with the <math>z\!</math> axis.  This angle is much larger than that for the Earth orbiting the sun.
This is the smallest angle that the angular momentum vector of a particle with <math>\ l=4 </math> can make with the <math>z\!</math> axis.  This angle is much larger than that for the Earth orbiting the sun, as we would expect.


Back to [[Orbital Angular Momentum Eigenfunctions]]
Back to [[Orbital Angular Momentum Eigenfunctions#Problems|Orbital Angular Momentum Eigenfunctions]]

Latest revision as of 13:40, 18 January 2014

In quantum mechanics,

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle L=\sqrt{\langle\hat{\mathbf{L}}^2\rangle}=\hbar\sqrt{l(l+1)}}

and

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle L_z=\langle\hat{L}_z\rangle=m\hbar.}

The angle Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \theta} between Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf{L}} and the Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z\!} axis is given by

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \cos{\theta}= \frac{L_z}{L} = \frac{m}{\sqrt{l(l+1)}}.}

To make Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \theta } as small as possible, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle m\!} must be at its maximum value, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle m=l.\!}

Therefore, the minimum angle Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \theta=\alpha\!} is given by

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \cos{\alpha}=\frac{l}{\sqrt{l(l+1)}},}

or by

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sin{\alpha}=\frac{1}{\sqrt{l+1}}.}

We now solve Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ L = \hbar\sqrt{l(l+1)}} to find Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle l.\!}

Since Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ l} will be very large, we make the approximation, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \sqrt{l(l+1)} \approx l \sqrt{\left(1+\frac{1}{l}\right)} = l,} so that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle L\approx l\hbar.} Because Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle l\!} is large, we see that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sin{\alpha}} is small, and thus we may make the approximation,

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \alpha\approx\sqrt{\frac{\hbar}{L}}.}

If we now substitute in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ L = 4.83\times 10^{31}\,\text{J}\cdot\text{s}} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \hbar = 1.055 \times 10^{-34}\,\text{J} \cdot \text{s},} we obtain

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \alpha \approx \sqrt{\frac{1.055\times 10^{-34}}{4.83\times 10^{31}}}\approx 1.48 \times 10^{-33}\,\text{rad}.}

This is the smallest angle that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf{L}} can make with the Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z\!} axis in the case of the Earth going around the sun.

In the case of a quantum particle with Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ l = 4} , we must use the exact expression for the angle.

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \sin \alpha = \frac{1}{\sqrt{5}},}

which gives us

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \alpha \approx 0.464\,\text{rad} = 26.6 \deg. }

This is the smallest angle that the angular momentum vector of a particle with Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ l=4 } can make with the Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z\!} axis. This angle is much larger than that for the Earth orbiting the sun, as we would expect.

Back to Orbital Angular Momentum Eigenfunctions