Logarithmic Potential in WKB: Difference between revisions

From PhyWiki
Jump to navigation Jump to search
No edit summary
 
(7 intermediate revisions by the same user not shown)
Line 1: Line 1:
<math> (n - \frac{1}{4})\pi h = \int_{0}^{r_{0}}\sqrt{2m[E-V_{0} ln(r/a)]}dr </math>
The Bohr-Sommerfeld quantization condition for this problem is


<math>( E = V_{0} ln(r_{0}/a) '''defines''' r_{0} )</math>
<math>\int_{0}^{x_{0}}\sqrt{2m\left [E-V_{0}\ln\left (\frac{x}{a}\right )\right ]}\,dx=(n - \tfrac{1}{4})\pi\hbar.</math>


= <math> \sqrt{2m} \int_{0}^{r_{0} } \sqrt{ V_{0} ln(r_{0} / a) - V_{0} ln(r/a) } dr  = \sqrt{ 2m V_{0}} \int_{0}^{r_{0}}\sqrt{ln(r_{0} / a)}dr</math>
Note that <math>E=V_{0}\ln\left (\frac{x_{0}}{a}\right )</math> ''defines'' <math>x_{0}.\!</math> We may then rewrite the integral as


'''Let''' <math> x\equiv ln(r_{0}/a)</math>
<math>\sqrt{ 2m V_{0}} \int_{0}^{xr_{0}}\sqrt{ln\left (\frac{x_{0}}{x}\right )}\,dx=(n - \tfrac{1}{4})\pi\hbar.</math>


'''so''' <math> e^{x} = r_{0}/r </math>'''or''' <math> r = r_{0}e^{-x} \Rightarrow dr = -r_{0}e^{-x}dx
Let us now make the substitution, <math>\xi=\ln\left (\frac{x_{0}}{x}\right ).</math>  We then obtain


(n-\frac{1}{4})\pi \hbar = \sqrt{2mV_{0}}(-r_{0})\int_{x_{1}}^{x_{2}}\sqrt{x}e^{-e}dx </math> '''. Limits :''' <math> \begin{cases}
<math>\sqrt{2mV_{0}}x_{0}\int_{0}^{\infty}\sqrt{x}e^{-x}\,dx=(n-\tfrac{1}{4})\pi \hbar,</math>
& \text{  } r=0 \Rightarrow x_{1}=\infty  \\
& \text{  } r=r_{0} \Rightarrow x_{2}=0
\end{cases}
</math>
<math> (n-\frac{1}{4})\pi \hbar = \sqrt{2mV_{0}}(r_{0})\int_{0}^{\infty }\sqrt{x}e^{-x}dx=\sqrt{2mV_{0}}r_{0}\Gamma (3/2)=\sqrt{2mV_{0}}r_{0}\frac{\sqrt{\pi }}{2} </math>


<math> r_{0}=\sqrt{\frac{2\pi }{mV_{0}}}(n-\frac{1}{4})\Rightarrow E_{n}=V_{0}ln[\frac{\hbar}{a}\sqrt{\frac{2\pi }{mV_{0}}}(n-\frac{1}{4})]=V_{0}ln(n-\frac{1}{4})+V_{0}ln[\frac{\hbar}{a}\sqrt{\frac{2\pi }{mV_{0}}}] </math>
or, evaluating the integral,


<math> E_{n+1}-E_{n}=V_{0}ln(n+\frac{3}{4})-V_{0}ln(n-\frac{1}{4})=V_{0}ln(\frac{n+3/4}{n-1/4}) </math> ''',which is indeed independent of m (and a).'''
<math>\tfrac{1}{2}\sqrt{2\pi mV_{0}}x_{0}=(n-\tfrac{1}{4})\pi \hbar.</math>


Back to [[WKB in Spherical Coordinates]]
Solving for <math>x_0,\!</math> we obtain
 
<math>x_{0}=\sqrt{\frac{\pi}{2mV_{0}}}(2n-\tfrac{1}{2})\hbar.</math>
 
The energy spectrum is thus
 
<math>E_n=V_0\ln\left [\sqrt{\frac{\pi}{2mV_{0}a^2}}(2n-\tfrac{1}{2})\hbar\right ].</math>
 
If we now calculate the spacing between two adjacent energy levels, we obtain
 
<math>E_{n+1}-E_{n}=V_{0}\ln\left (\frac{n+\tfrac{3}{4}}{n-\tfrac{1}{4}}\right ).</math>
 
We see that this spacing is indeed independent of mass (and, in fact, of <math>a\!</math> as well).
 
Back to [[WKB Approximation#Problems|WKB Approximation]]

Latest revision as of 13:37, 18 January 2014

The Bohr-Sommerfeld quantization condition for this problem is

Note that defines We may then rewrite the integral as

Let us now make the substitution, We then obtain

or, evaluating the integral,

Solving for we obtain

The energy spectrum is thus

If we now calculate the spacing between two adjacent energy levels, we obtain

We see that this spacing is indeed independent of mass (and, in fact, of as well).

Back to WKB Approximation