Phy5645/Gamowfactor: Difference between revisions

From PhyWiki
Jump to navigation Jump to search
No edit summary
No edit summary
 
(One intermediate revision by the same user not shown)
Line 1: Line 1:
From the WKB apporximation we know that at the turning point, <math>E= V(x)= V_{coul} = \frac{1}{4\pi\epsilon_{0}}\frac{2z_{1}e^{2}}{R_{c}}</math>
At the turning point,


<math>R_{c} = \frac{1}{4\pi\epsilon_{0}}\frac{2z_{1}e^{2}}{E}</math>
<math>E=V(b)=\frac{2z_{1}e^{2}}{b},</math>


Now the Transition probabilty
so that
<math>T\cong \Theta ^{2}</math>,
where <math>\Theta = e^{-\int_{b}^{a}q(x)dx}</math>


and <math>q(x)= \frac{1}{\hbar}\sqrt{2m\left(V(x)-E\right)}</math>
<math>b=\frac{2z_{1}e^{2}}{E}.</math>


<math>\Theta ^{2} = e^{-2\int_{b}^{a} q(x)dx}</math>
Within the WKB approximation, the transmission probability is given by


In the present problem <math>b= R</math> and <math>a = R_{c}</math>  
<math>T=\exp\left [-2\int_{a}^{b}p(x)\,dx\right ],</math>  


Now,
where <math>p(x)=\frac{1}{\hbar}\sqrt{2m\left(V(x)-E\right)}.</math>
<math>\int_{R}^{R_{c}} \left(\frac{2m}{\hbar^{2}}\right)^{\frac{1}{2}}(V(x)-E)^{\frac{1}{2}} dr =  \left(\frac{2m}{\hbar^{2}}\right)^{\frac{1}{2}}\int_{R}^{R_{c}}
\left(\frac{1}{4\pi\epsilon_{0}}\frac{2z_{1}e^{2}}{r}-E\right)^\frac{1}{2}dr</math>


<math>= \left(\frac{2m}{\hbar^{2}}\right)^{\frac{1}{2}}\left(\frac{2z_{1}e^{2}}{4\pi\epsilon_{0}}\right)^{\frac{1}{2}}\int_{R}^{R_{c}} \left [ \frac{1}{r} - \frac{1}{R_{c}}\right ]^{\frac{1}{2}}dr</math>
We now evaluate the integral appearing in the exponential.
<math>\int_{a}^{b}p(x)\,dx=\sqrt{\frac{2m}{\hbar^2}}\int_{a}^{b}\sqrt{V(x)-E}\,dx = \sqrt{\frac{2m}{\hbar^{2}}}\int_{a}^{b}  
\sqrt{\frac{2z_{1}e^{2}}{x}-E}\,dx</math>


let, <math>I = \int_{R}^{R_{c}} \left [ \frac{1}{r} - \frac{1}{R_{c}}\right ]^{\frac{1}{2}}dr</math>
<math>=\sqrt{\frac{4mz_{1}e^{2}}{\hbar^2}}\int_{a}^{b} \sqrt{\frac{1}{x}-\frac{1}{b}}\,dx</math>


Let us define


Put,
<math>I=\int_{a}^{b} \sqrt{\frac{1}{x}-\frac{1}{b}}\,dx.</math>
<math>r= R_{0}cos^{2}\theta</math>  
and


<math>dr= -R_{0}2cos\theta sin\theta</math>
We now make the substitution,
<math>x=b\cos^{2}\theta.\!</math>  


<math>I= 2\int_{0}^{cos^{-1}\sqrt{\frac{R}{R_{c}}}} \left( \frac{R_{c}sin^{2}\theta}{cos^{2}\theta}\right)^{\frac{1}{2}} cos\theta sin\theta d\theta</math>
We then obtain


<math>2R_{c}^{\frac{1}{2}}\int_{0}^{cos^{-1}\sqrt{\frac{R}{R_{c}}}} sin^{2}\theta d\theta </math>
<math>I= 2\int_{0}^{\cos^{-1}\left (\sqrt{\frac{a}{b}}\right )} \sqrt{\frac{b\sin^{2}\theta}{\cos^{2}\theta}}\cos\theta\sin\theta\, d\theta</math>


<math>I= R_{c}^{\frac{1}{2}}\int_{0}^{cos^{-1}\sqrt{\frac{R}{R_{c}}}} ( 1-{cos2\theta}) d\theta</math>
<math>=2\sqrt{b}\int_{0}^{\cos^{-1}\left (\sqrt{\frac{a}{b}}\right )}\sin^{2}\theta\,d\theta </math>


<math>I= R_{c}^{\frac{1}{2}}\left [ \theta - sin\theta cos\theta  \right ]_{0}^{cos^{-1}\sqrt{\frac{R}{R_{c}}}}</math>
<math>=\sqrt{b}\int_{0}^{\cos^{-1}\left (\sqrt{\frac{a}{b}}\right )} ( 1-\cos{2\theta})\,d\theta</math>


<math>I= R_{c}^{\frac{1}{2}}\left [ cos^{-1}\sqrt{\frac{R}{R_{c}}} - sin \left(cos^{-1}\sqrt{\frac{R}{R_{c}}}\right) cos\left(cos^{-1}\sqrt{\frac{R}{R_{c}}}\right) \right ]</math>
<math>=\sqrt{b}\left [ \theta - \sin\theta \cos\theta  \right ]_{0}^{\cos^{-1}\left (\sqrt{\frac{a}{b}}\right )}</math>


<math>I= R_{c}^{\frac{1}{2}}\left [ cos^{-1}\sqrt{\frac{R}{R_{c}}} - \sqrt{\frac{R}{R_{c}}}\sqrt{1- \frac{R}{R_{c}}\right ]</math>
<math>=\sqrt{b}\left \{\cos^{-1}\left (\sqrt{\frac{a}{b}}\right )-\sin\left [\cos^{-1}\left (\sqrt{\frac{a}{b}}\right )\right ]\cos\left [\cos^{-1}\left (\sqrt{\frac{a}{b}}\right )\right ]\right \}</math>


<math>I= R_{c}^{\frac{1}{2}}\left [ cos^{-1}\sqrt{\frac{R}{R_{c}}} - \sqrt{\frac{R}{R_{c}}- \left(\frac{R}{R_{c}}\right)^{2}}  \right ]</math>
<math>=\sqrt{b}\left [\cos^{-1}\left (\sqrt{\frac{a}{b}}\right )-\sqrt{\frac{a}{b}}\sqrt{1-\frac{a}{b}}  \right ]</math>


Let us consider <math>R_{c} \gg R</math>
Let us consider the limit, <math>b\gg a.</math> We then have


Then we have
<math>I\approx\frac{\pi}{2}\sqrt{b}-2\sqrt{a},</math>


<math>I\cong \sqrt{R_{c}}\left(cos^{-1}\sqrt{\frac{R}{R_{c}}}-\sqrt{\frac{R}{R_{c}}} \right)</math>
where we use the fact that <math>\cos^{-1}{x}\approx\frac{\pi}{2}-x.</math>


where <math>cos^{-1}\sqrt{\frac{R}{R_{c}}} \cong \frac{\pi}{2} - \left(\frac{R}{R_{c}}\right)^{\frac{1}{2}}</math>
Combining all of the above results, we get


Setting, charge of <math>\alpha</math>particle = 2= <math>Z_{2}</math>(in general)
<math> T=\exp\left (-\frac{2\pi z_{1}e^{2}}{\hbar}\sqrt{\frac{2m}{E}}+\frac{4}{\hbar}\sqrt{4mz_{1}e^{2}a}\right ).</math>


<math>\int q(x)dx = \left ( \frac{2Mz_{1}z_{2}e^{2}R_{c}}{\hbar^{2}4\pi\epsilon_0} \right )^{\frac{1}{2}}\left [\frac{\pi}{2} - 2\left(\frac{R}{R_{c}}\right)^{\frac{1}{2}}  \right ]</math>
We may express this in terms of the velocity of the alpha particle by noting that the kinetic energy <math>E=\tfrac{1}{2}mv^{2}.</math> Doing so, we obtain


Now <math> T\cong e^{-2\int q(x)dx} = exp\left [ -\frac{\pi z_{1}z_{2}e^{2}}{\hbar 4\pi\epsilon_0} \left (\frac{2M}{e}  \right )^{2} + \frac{4}{\hbar} \left ( \frac{2z_{1}z_{2}e^{2}MR}{4\pi\epsilon_0} \right )^{\frac{1}{2}}\right ]</math>
<math> T=\exp\left (-\frac{4\pi z_{1}e^{2}}{\hbar v} \right )\exp\left (\frac{8e}{\hbar}\sqrt{z_{1}ma}\right ).</math>


Now putting <math>E= \frac{1}{2}mv^{2}</math>, veloctiy of the particle
The first exponential factor is known as the Gamow factor. The Gamow factor determines the dependence of the transmission probability on the speed (or energy) of the alpha particle.
 
<math> T\cong exp\left ( \frac{-2\pi z_{1}z_{2}e^{2}}{4\pi\epsilon_0\hbar v} \right )exp \left ( \frac{32z_{1}z_{2}e^{2}MR}{4\pi\epsilon_0\hbar^{2} } \right )^{\frac{1}{2}}</math>
 
The 1st exponential term is known as the Gamow factor. The Gamow factor determines the dependence of the probability on the speed (or energy) of the alpha particle.


Back to [[WKB Approximation#Problems|WKB Approximation]]
Back to [[WKB Approximation#Problems|WKB Approximation]]

Latest revision as of 23:29, 14 January 2014

At the turning point,

so that

Within the WKB approximation, the transmission probability is given by

where

We now evaluate the integral appearing in the exponential.

Let us define

We now make the substitution,

We then obtain

Let us consider the limit, We then have

where we use the fact that

Combining all of the above results, we get

We may express this in terms of the velocity of the alpha particle by noting that the kinetic energy Doing so, we obtain

The first exponential factor is known as the Gamow factor. The Gamow factor determines the dependence of the transmission probability on the speed (or energy) of the alpha particle.

Back to WKB Approximation