Solution to Set 6: Difference between revisions

From PhyWiki
Jump to navigation Jump to search
(Begin)
 
 
(33 intermediate revisions by 2 users not shown)
Line 1: Line 1:
==Problem 1.==
==Problem 1==
===Given===
''Aluminum''(Al) is trivalent with
* atomic mass <math>m_{a} = 27</math> amu
* density <math>n = 2.7 g/cm^3</math>
* room temperature <math>T = 293 - 296.5 K</math>
* mean free time between electron collisions <math>t_{avg} = 4{\rm x}10^{-14}</math> s.


Aluminum is trivalent with atomic weight of 27 and a density of 2.7 <math>g/cm^3</math>. At room temperature the mean free time between electron collisions is <math>4{\rm x}10^{-14}</math> s.
===(a) Resistivity ===
Calculate the resistivity <math>\rho</math> of aluminum(Al) at room temperature.


<math>\rho = \frac{1}{\sigma} \;</math>
<math> = \frac{1}{ 37.8 \times 10^{6} S m^{-1}} \;</math>
<math> = 2.82 \times 10^{-8} \;</math>Ω·m


a) Calculate the resistivity of aluminum at room temperature.
===(b) Current ===


b) If a 2-V voltage is applied to the ends of an aluminum wire 10 m long and with a cross- sectional area of <math>1 mm^2</math>, what is the current flowing through it?
[[Image:wire cross section.gif|left|150px]]


If a 2-V voltage is applied to the ends of an aluminum wire 10 m long and with a cross- sectional area of <math>1 mm^2</math>
<math>R = \frac{\ell \cdot \rho}{A} \;</math>
<math> = \frac{\left (10m  \right ) \cdot \left (2.646 \times 10^{-8} \Omega \cdot m  \right )}{\left (10^{-6}m  \right )} \;</math>
<math> = 0.2646 \Omega \;</math>
What is the current flowing through it?
<math>I = \frac{V}{R} = \frac{2V}{0.2646 \Omega} = 7.559 A \;</math>


==Problem 2==
==Problem 2==


The resistivity of a certain material at room temperature is 0.02 Wm and the Hall coefficient is <math>5{\rm x}10^{-4}</math> <math>m^3 /C</math>. An electric field of 1 V/m is applied across it. Deduce all the information you can think of about this material.  
The resistivity of a certain material at room temperature is 0.02 Wm and the Hall coefficient is <math>5{\rm x}10^{-4}</math> <math>m^3 /C</math>. An electric field of 1 V/m is applied across it. Deduce all the information you can think of about this material.


===Given===
* Temperature <math>T = 20^{\circ} C \;</math>
* Resistivity <math>\rho = 0.02 \Omega \cdot m \;</math>
* Hall coefficient <math>R_{H} = 5{\rm x}10^{-4} \tfrac{m^{3}}{C} \;</math>
* Electric field <math>E = 1 \tfrac{V}{m} \;</math>
===Deduction===
[[Image:Detective.gif|right|250px]]
* Conductivity
<math>\sigma = \frac{1}{\rho} = \frac{1}{0.02 \Omega \cdot m} = 50 \tfrac{S}{m} \;</math>
* Current Density
<math>\mathbf{J} = \frac{E}{\rho} = \frac{1 \tfrac{V}{m}}{0.02 \Omega \cdot m} = 50 \tfrac {A}{m^{2}} \;</math>
* Magnetic Field
<math>R_{H} = \frac{E}{\mathbf{J} \cdot B} \;</math>
<math>B = \frac{E}{\mathbf{J} \cdot R_{H}} \;</math>
<math> = \frac{\left (1 \tfrac{V}{m}  \right )}{\left ( 50 \tfrac{A}{m^{2}} \right ) \left ( 5 \times 10^{-4} m^3 \right )} \;</math>
<math> = 40 T \;</math>


==Problem 3.==
==Problem 3.==


a) Sketch a setup used to measure the Hall effect. Label each part.
===(a) Hall Effect Sketch===


b) A semiconductor crystal is 5 mm long, 4 mm wide, and 2 mm thick. A 40mA current flows across the length of the sample after a 2-V battery is connected to the ends. When a 0.1T magnetic field is applied perpendicular to the large surface of the specimen, a Hall voltage of 15mV develops across the width of the sample. Determine the i) conductivity, ii) carrier density, iii) mobility, iv) Fermi velocity, for this semiconductor.
Sketch a setup used to measure the Hall effect. Label each part.


[[Image:Hall_Effect.jpg|center|frameless|400px]]
===(b) Semiconductor Crystal===
A semiconductor crystal is 5 mm long, 4 mm wide, and 2 mm thick. A 40mA current flows across the length of the sample after a 2-V battery is connected to the ends. When a 0.1T magnetic field is applied perpendicular to the large surface of the specimen, a Hall voltage of 15mV develops across the width of the sample.
====Given====
* Length <math>\ell</math> = 5 mm = 0.005 m
* Width W = 4 mm = 0.004 m
* Thickness H = 2 mm = 0.002 m
* Current I = 40 mA = 0.04 A
* Voltage V = 2 V
* Mag Field B = 0.1 T
* Hall Volt <math>V_H</math> = 15 mV = 0.015 V
You can deduce that:
* Area <math>A = L \times W = 2.0 \times 10^{-5} m^2</math>
[[Image:Semiconductor.png|right|200px]]
====Determine====
* Conductivity
<math>\rho = R \cdot \frac {A}{\ell} \;</math>
<math> = \frac{V}{I} \cdot \frac {A}{\ell} \;</math>
<math> = \frac{2V}{0.04A} \cdot \frac{2 \times 10^{-5}m^2}{0.005m} \;</math>
<math> = 0.2 \Omega \cdot m \;</math>
<math>\sigma = \frac{1}{\rho} = \frac{1}{0.2 \Omega \cdot m} \;</math>
<math> = 5 \tfrac{S}{m} \;</math>
* Carrier density
<math>R_H = \frac{E_y}{\mathbf{J_x} \cdot B} \;</math>
<math> = \frac{V_H}{I \cdot \tfrac{B}{\ell}} \;</math>
<math> = -\frac{1}{ne} \;</math>
<math>n = -\frac{1}{e} \cdot \frac{I \cdot \tfrac{B}{\ell}}{V_H} \;</math>
<math> = - \frac{1}{-1.602 \times 10^{-19}C} \cdot \frac{\left (0.04A  \right ) \cdot \tfrac{\left (0.1T  \right )}{\left (0.005m  \right )}}{0.015V} \;</math>
<math> = 3.329 \times 10^{20} m^{-3} \;</math>
* Mobility
<math>\mathbf{E} = \frac{1}{4 \pi \varepsilon_0 } \int \frac{\rho}{r^2} \mathbf{\hat{r}} dV \;</math>
<math> = \frac{1}{4 \pi \left (8.854 \times 10^{-12} \tfrac{C^2}{N \cdot m^2}  \right )} \int \frac{\left ( 0.2 \Omega \cdot m \right )}{\left ( 0.005m \right )^2} dV \;</math>
<math> = 3.595 \times 10^{11} \tfrac{N}{C} \;</math>
<math>\mathbf{F} = q \cdot \mathbf{E} \;</math>
<math> = \left ( 1.602 \times 10^{-19} C \right ) \left ( 3.595 \times 10^{11} \tfrac{N}{C} \right ) \;</math>
<math> = 5.759 \times 10^{-8} N \;</math>
* Fermi velocity
<math>E_f = \frac{\hbar^2 \pi^2}{2 m_e \ell^2} n_f^2 \;</math>
<math> = \frac{\left (1.055 \times 10^{-34} J \cdot s  \right )^2 \pi^2}{2 \cdot \left ( 9.109 \times 10^{-31} kg \right ) \left ( 0.005m \right )^2} \;</math>
<math> = 2.412 \times 10^{-33} J \;</math>
<math>V_f = \sqrt{\frac{2 E_f}{m_e}} \;</math>
<math> = \sqrt{\frac{2 \left ( 2.412 \times 10^{-33} J \right ) }{\left ( 9.109 \times 10^{-31} kg \right )}} \;</math>
<math> = 0.0727715501 \tfrac{m}{s} \;</math>


==Problem 4==
==Problem 4==


a) Derive the expressions for the Fermi energy, Fermi velocity, and electronic density of states for a two-dimensional free electron gas.
===(a) Fermi Derivations===
 
Derive the expressions for the Fermi energy, Fermi velocity, and electronic density of states for a two-dimensional free electron gas.
 
====Fermi Energy====
<math>E_f = \frac{\hbar^2 \pi^2}{2 m_e \ell^2} n_f^2 \;</math>
 
====Fermi Velocity====
 
Fermi energy is related to fermi velocity such that:
 
:<math>E_F = \tfrac{1}{2}m_e v_F^2 \;</math>
 
Solve for velocity
 
:<math>v_F = \sqrt{\frac{2 E_F}{m_e}} \;</math>
 
====Electronic Density====
 
In 1 dimension
 
::''<math>E(k) = \frac{\hbar^2 k^2}{2m}</math>''
 
::''<math>k = \frac{2\pi m}{L}\;</math>; <math>m = 0, \pm 1, \pm 2,...</math>''
 
::''<math>n = \frac{N}{L} = \frac{2}{L} \sum_{k < |k_F |} = \frac{2}{2 \pi } \sum_{k < |k_F |}\frac{2 \pi}{L} = \frac{2}{2 \pi} 2\int_0^{k_F} dk = \frac{2k_F}{\pi}.</math>
 
::''Here the extra factor of 2 is due to spin''
 
::''The other factor of two comes from the addition of the negative values for k''
 
::''<math>E_F = \frac{\hbar^2 \pi^2 n^2}{8m}.</math>''
 
===(b) Fermi Energy & Velocity of 2D Gas ===


b) A 2D electron gas formed in a GaAs/AlGaAs quantum well has a density of
A 2D electron gas formed in a GaAs/AlGaAs quantum well has a density of <math>2{\rm x}10^{11} cm^{-2}</math>. Assuming that the electrons there have the free electron mass, calculate the Fermi energy and Fermi velocity.
<math>2{\rm x}10^{11} cm^{-2}</math>. Assuming that the electrons there have the free electron mass, calculate the
Fermi energy and Fermi velocity.

Latest revision as of 19:49, 28 April 2009

Problem 1

Given

Aluminum(Al) is trivalent with

  • atomic mass Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle m_{a} = 27} amu
  • density Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n = 2.7 g/cm^3}
  • room temperature Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T = 293 - 296.5 K}
  • mean free time between electron collisions Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t_{avg} = 4{\rm x}10^{-14}} s.

(a) Resistivity

Calculate the resistivity Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \rho} of aluminum(Al) at room temperature.

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \rho = \frac{1}{\sigma} \;} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle = \frac{1}{ 37.8 \times 10^{6} S m^{-1}} \;} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle = 2.82 \times 10^{-8} \;} Ω·m

(b) Current

Wire cross section.gif

If a 2-V voltage is applied to the ends of an aluminum wire 10 m long and with a cross- sectional area of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1 mm^2}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle R = \frac{\ell \cdot \rho}{A} \;} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle = \frac{\left (10m \right ) \cdot \left (2.646 \times 10^{-8} \Omega \cdot m \right )}{\left (10^{-6}m \right )} \;} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle = 0.2646 \Omega \;}

What is the current flowing through it?

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle I = \frac{V}{R} = \frac{2V}{0.2646 \Omega} = 7.559 A \;}

Problem 2

The resistivity of a certain material at room temperature is 0.02 Wm and the Hall coefficient is Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 5{\rm x}10^{-4}} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle m^3 /C} . An electric field of 1 V/m is applied across it. Deduce all the information you can think of about this material.

Given

  • Temperature Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T = 20^{\circ} C \;}
  • Resistivity Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \rho = 0.02 \Omega \cdot m \;}
  • Hall coefficient Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle R_{H} = 5{\rm x}10^{-4} \tfrac{m^{3}}{C} \;}
  • Electric field Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E = 1 \tfrac{V}{m} \;}

Deduction

Detective.gif
  • Conductivity

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sigma = \frac{1}{\rho} = \frac{1}{0.02 \Omega \cdot m} = 50 \tfrac{S}{m} \;}

  • Current Density

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf{J} = \frac{E}{\rho} = \frac{1 \tfrac{V}{m}}{0.02 \Omega \cdot m} = 50 \tfrac {A}{m^{2}} \;}

  • Magnetic Field

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle R_{H} = \frac{E}{\mathbf{J} \cdot B} \;}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B = \frac{E}{\mathbf{J} \cdot R_{H}} \;} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle = \frac{\left (1 \tfrac{V}{m} \right )}{\left ( 50 \tfrac{A}{m^{2}} \right ) \left ( 5 \times 10^{-4} m^3 \right )} \;} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle = 40 T \;}

Problem 3.

(a) Hall Effect Sketch

Sketch a setup used to measure the Hall effect. Label each part.

Hall Effect.jpg

(b) Semiconductor Crystal

A semiconductor crystal is 5 mm long, 4 mm wide, and 2 mm thick. A 40mA current flows across the length of the sample after a 2-V battery is connected to the ends. When a 0.1T magnetic field is applied perpendicular to the large surface of the specimen, a Hall voltage of 15mV develops across the width of the sample.

Given

  • Length Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ell} = 5 mm = 0.005 m
  • Width W = 4 mm = 0.004 m
  • Thickness H = 2 mm = 0.002 m
  • Current I = 40 mA = 0.04 A
  • Voltage V = 2 V
  • Mag Field B = 0.1 T
  • Hall Volt Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V_H} = 15 mV = 0.015 V

You can deduce that:

  • Area Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A = L \times W = 2.0 \times 10^{-5} m^2}
Semiconductor.png

Determine

  • Conductivity

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \rho = R \cdot \frac {A}{\ell} \;} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle = \frac{V}{I} \cdot \frac {A}{\ell} \;} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle = \frac{2V}{0.04A} \cdot \frac{2 \times 10^{-5}m^2}{0.005m} \;} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle = 0.2 \Omega \cdot m \;}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sigma = \frac{1}{\rho} = \frac{1}{0.2 \Omega \cdot m} \;} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle = 5 \tfrac{S}{m} \;}

  • Carrier density

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle R_H = \frac{E_y}{\mathbf{J_x} \cdot B} \;} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle = \frac{V_H}{I \cdot \tfrac{B}{\ell}} \;} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle = -\frac{1}{ne} \;}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n = -\frac{1}{e} \cdot \frac{I \cdot \tfrac{B}{\ell}}{V_H} \;} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle = - \frac{1}{-1.602 \times 10^{-19}C} \cdot \frac{\left (0.04A \right ) \cdot \tfrac{\left (0.1T \right )}{\left (0.005m \right )}}{0.015V} \;} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle = 3.329 \times 10^{20} m^{-3} \;}

  • Mobility

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf{E} = \frac{1}{4 \pi \varepsilon_0 } \int \frac{\rho}{r^2} \mathbf{\hat{r}} dV \;} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle = \frac{1}{4 \pi \left (8.854 \times 10^{-12} \tfrac{C^2}{N \cdot m^2} \right )} \int \frac{\left ( 0.2 \Omega \cdot m \right )}{\left ( 0.005m \right )^2} dV \;} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle = 3.595 \times 10^{11} \tfrac{N}{C} \;}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf{F} = q \cdot \mathbf{E} \;} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle = \left ( 1.602 \times 10^{-19} C \right ) \left ( 3.595 \times 10^{11} \tfrac{N}{C} \right ) \;} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle = 5.759 \times 10^{-8} N \;}

  • Fermi velocity

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E_f = \frac{\hbar^2 \pi^2}{2 m_e \ell^2} n_f^2 \;} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle = \frac{\left (1.055 \times 10^{-34} J \cdot s \right )^2 \pi^2}{2 \cdot \left ( 9.109 \times 10^{-31} kg \right ) \left ( 0.005m \right )^2} \;} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle = 2.412 \times 10^{-33} J \;}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V_f = \sqrt{\frac{2 E_f}{m_e}} \;}

Problem 4

(a) Fermi Derivations

Derive the expressions for the Fermi energy, Fermi velocity, and electronic density of states for a two-dimensional free electron gas.

Fermi Energy

Fermi Velocity

Fermi energy is related to fermi velocity such that:

Solve for velocity

Electronic Density

In 1 dimension

;
Here the extra factor of 2 is due to spin
The other factor of two comes from the addition of the negative values for k

(b) Fermi Energy & Velocity of 2D Gas

A 2D electron gas formed in a GaAs/AlGaAs quantum well has a density of . Assuming that the electrons there have the free electron mass, calculate the Fermi energy and Fermi velocity.