Talk:Phy5645: Difference between revisions

From PhyWiki
Jump to navigation Jump to search
(New page: Given that Planck's energy distribution equation is: <math> \rho_{Planck} = \frac{2c^2}{\lambda^5}\frac{h}{e^\frac{hc}{\lambda k T}-1}</math> show that in the long wavelength limit this ...)
 
(Undo revision 7168 by JoonIlKim (Talk))
 
(4 intermediate revisions by 2 users not shown)
Line 1: Line 1:
Given that Planck's energy distribution equation is:
Given that Planck's energy distribution equation is:


<math> \rho_{Planck} = \frac{2c^2}{\lambda^5}\frac{h}{e^\frac{hc}{\lambda k T}-1}</math>
:<math> \rho_{\text{Planck}} = \frac{2c^2}{\lambda^5}\frac{h}{e^\frac{hc}{\lambda k T}-1}</math>


show that in the long wavelength limit this reduces to the Rayleigh-Jeans equation:
show that in the long wavelength limit this reduces to the Rayleigh-Jeans equation:


<math>\rho_{Rayleigh} = \frac{2ckT}{\lambda^4}</math>
:<math>\rho_{\text{Rayleigh}} = \frac{2ckT}{\lambda^4}</math>




Line 19: Line 19:
<math>\displaystyle\lim_{\lambda\to\infty}</math>
<math>\displaystyle\lim_{\lambda\to\infty}</math>


by expanding the exponential in the denominator for first order in lambda:
by expanding the exponential in the denominator for first order in <math> \lambda \!</math>:


<math>e^\frac{hc}{\lambda k T}-1 \approx (c h)/(k \lambda t\implies </math>
:<math>
<math>\frac{2c^2}{\lambda^5}\frac{h}{e^\frac{hc}{\lambda k T}-1} \approx \frac{2c^2}{\lambda^5}\left(\frac{h}{(c h)/(k \lambda t)}\right)</math>
e^\frac{hc}{\lambda k T}-1 \approx (hc)/(\lambda kT)  </math>
:<math> \implies  \frac{2c^2}{\lambda^5}\frac{h}{e^\frac{hc}{\lambda k T}-1} \approx \frac{2c^2}{\lambda^5}\left(\frac{h}{(hc)/(\lambda kT)}\right)
</math>


then
then


<math>\frac{2c^2}{\lambda^5}\left(\frac{h}{(c h)/(k \lambda t)}\right) = \frac{2 c k t }{\lambda^4}</math>
:<math>\frac{2c^2}{\lambda^5}\left(\frac{h}{(hc)/(\lambda kT)}\right) = \frac{2 c k T }{\lambda^4}</math>

Latest revision as of 00:26, 11 December 2009

Given that Planck's energy distribution equation is:

show that in the long wavelength limit this reduces to the Rayleigh-Jeans equation:




Solution:

Evaluate the limit:

by expanding the exponential in the denominator for first order in :

then