Phy5645:Problem 4.1 Solution: Difference between revisions
Jump to navigation
Jump to search
DavidMorris (talk | contribs) m (→Solution: Fixed parenthesis) |
DavidMorris (talk | contribs) (→Solution: Fixed exponential of p) |
||
(2 intermediate revisions by the same user not shown) | |||
Line 24: | Line 24: | ||
& = \left [ \sum_{m=0}^\infty \frac{a^m}{m!} \frac{d^m}{dx^m} \right ] \left [\sum_{n=0}^\infty \frac { \left . \psi^{(n)}(x) \right \vert_{x=0} }{n!} x^n \right ] \\ | & = \left [ \sum_{m=0}^\infty \frac{a^m}{m!} \frac{d^m}{dx^m} \right ] \left [\sum_{n=0}^\infty \frac { \left . \psi^{(n)}(x) \right \vert_{x=0} }{n!} x^n \right ] \\ | ||
& = \exp \left ( a \cdot \frac{d | & = \exp \left ( a \cdot \frac{d}{dx} \right ) \psi(x) \\ | ||
& = \exp \left ( a \cdot \frac{i}{\hbar} \cdot \frac{\hbar}{i} \frac{d | & = \exp \left ( a \cdot \frac{i}{\hbar} \cdot \frac{\hbar}{i} \frac{d}{dx} \right ) \psi(x) \\ | ||
& = e^{ i \frac{a}{\hbar} \hat p } \psi(x) | & = e^{ i \frac{a}{\hbar} \hat p } \psi(x) | ||
Line 39: | Line 39: | ||
</math> | </math> | ||
It is now shown that <math>\tilde{U}(a)</math> is unitary: | It is now shown that <math>\tilde{U}(a)</math> is unitary, i.e. <math>\tilde{U}(a)^\dagger = \tilde{U}(a)^{-1}</math>: | ||
<math> | |||
\tilde{U}(a)^\dagger = e^{ (i)^\dagger \frac{a}{\hbar} (\hat{p})^\dagger } = e^{ -i \frac{a}{\hbar} \hat p } = e^{ i \frac{(-a)}{\hbar} \hat p } = \tilde{U}(-a) | |||
</math> | |||
<math> | |||
\begin{align} | |||
\Rightarrow \tilde{U}(a)^\dagger \tilde{U}(a) \psi(x) & = \tilde{U}(-a) \tilde{U}(a) \psi(x) \\ | |||
& = \tilde{U}(-a) \psi(x + a) \\ | |||
& = \psi(x + a - a) \\ | |||
& = \mathbf{1} \psi(x) \\ | |||
\end{align} | |||
</math> | |||
<math> | |||
\begin{align} | |||
& \Rightarrow \tilde{U}(a)^\dagger \tilde{U}(a) = \mathbf{1} \\ | |||
& \Rightarrow \tilde{U}(a)^\dagger \tilde{U}(a) \tilde{U}(a)^{-1} = \mathbf{1} \tilde{U}(a)^{-1} \\ | |||
& \therefore \tilde{U}(a)^\dagger = \tilde{U}(a)^{-1} \\ | |||
\end{align} | |||
</math> |
Latest revision as of 14:34, 19 November 2009
Problem
Prove that there is a unitary operator , which is a function of , such that for some wavefunction , .
Solution
So,
It is now shown that is unitary, i.e. :