Phy5645:Problem 4.1 Solution: Difference between revisions

From PhyWiki
Jump to navigation Jump to search
(→‎Solution: Fixed exponential of p)
 
(One intermediate revision by the same user not shown)
Line 24: Line 24:
& = \left [ \sum_{m=0}^\infty \frac{a^m}{m!} \frac{d^m}{dx^m} \right ] \left [\sum_{n=0}^\infty \frac { \left . \psi^{(n)}(x) \right \vert_{x=0} }{n!}  x^n \right ] \\
& = \left [ \sum_{m=0}^\infty \frac{a^m}{m!} \frac{d^m}{dx^m} \right ] \left [\sum_{n=0}^\infty \frac { \left . \psi^{(n)}(x) \right \vert_{x=0} }{n!}  x^n \right ] \\


& = \exp \left ( a \cdot \frac{d^m}{dx^m} \right ) \psi(x) \\
& = \exp \left ( a \cdot \frac{d}{dx} \right ) \psi(x) \\


& = \exp \left ( a \cdot \frac{i}{\hbar} \cdot \frac{\hbar}{i} \frac{d^m}{dx^m} \right ) \psi(x) \\
& = \exp \left ( a \cdot \frac{i}{\hbar} \cdot \frac{\hbar}{i} \frac{d}{dx} \right ) \psi(x) \\


& = e^{ i \frac{a}{\hbar} \hat p } \psi(x)
& = e^{ i \frac{a}{\hbar} \hat p } \psi(x)
Line 42: Line 42:


<math>
<math>
\tilde{U}(a)^\dagger =  e^{ (i)^\dagger \frac{a}{\hbar} (\hat{p})^\dagger } = e^{ -i \frac{a}{\hbar} \hat p }
\tilde{U}(a)^\dagger =  e^{ (i)^\dagger \frac{a}{\hbar} (\hat{p})^\dagger } = e^{ -i \frac{a}{\hbar} \hat p } = e^{ i \frac{(-a)}{\hbar} \hat p } = \tilde{U}(-a)
</math>
</math>


Line 48: Line 48:
\begin{align}
\begin{align}


\Rightarrow \tilde{U}(a)^\dagger \tilde{U}(a) & = e^{ -i \frac{a}{\hbar} \hat p } e^{ i \frac{a}{\hbar} \hat p } \\
\Rightarrow \tilde{U}(a)^\dagger \tilde{U}(a) \psi(x) & = \tilde{U}(-a) \tilde{U}(a) \psi(x) \\
& = \tilde{U}(-a) \psi(x + a) \\
& = \psi(x + a - a) \\
& = \mathbf{1} \psi(x) \\


& = \left [ \sum_{m=0}^\infty \frac{ \left ( -i a \hat p \right )^m }{m!}  \right ] \left [ \sum_{n=0}^\infty \frac{ \left ( i a \hat p \right )^n }{n!}  \right ]
\end{align}
</math>
 
<math>
\begin{align}


& \Rightarrow \tilde{U}(a)^\dagger \tilde{U}(a) = \mathbf{1} \\
& \Rightarrow \tilde{U}(a)^\dagger \tilde{U}(a) \tilde{U}(a)^{-1} = \mathbf{1} \tilde{U}(a)^{-1} \\
& \therefore \tilde{U}(a)^\dagger = \tilde{U}(a)^{-1} \\


\end{align}
\end{align}
</math>
</math>

Latest revision as of 14:34, 19 November 2009

Problem

Prove that there is a unitary operator , which is a function of , such that for some wavefunction , .

Solution

So,

It is now shown that is unitary, i.e. :