|
|
Line 24: |
Line 24: |
| & = \left [ \sum_{m=0}^\infty \frac{a^m}{m!} \frac{d^m}{dx^m} \right ] \left [\sum_{n=0}^\infty \frac { \left . \psi^{(n)}(x) \right \vert_{x=0} }{n!} x^n \right ] \\ | | & = \left [ \sum_{m=0}^\infty \frac{a^m}{m!} \frac{d^m}{dx^m} \right ] \left [\sum_{n=0}^\infty \frac { \left . \psi^{(n)}(x) \right \vert_{x=0} }{n!} x^n \right ] \\ |
|
| |
|
| & = \exp \left ( a \cdot \frac{d^m}{dx^m} \right ) \psi(x) \\ | | & = \exp \left ( a \cdot \frac{d}{dx} \right ) \psi(x) \\ |
|
| |
|
| & = \exp \left ( a \cdot \frac{i}{\hbar} \cdot \frac{\hbar}{i} \frac{d^m}{dx^m} \right ) \psi(x) \\ | | & = \exp \left ( a \cdot \frac{i}{\hbar} \cdot \frac{\hbar}{i} \frac{d}{dx} \right ) \psi(x) \\ |
|
| |
|
| & = e^{ i \frac{a}{\hbar} \hat p } \psi(x) | | & = e^{ i \frac{a}{\hbar} \hat p } \psi(x) |
Latest revision as of 14:34, 19 November 2009
Problem
Prove that there is a unitary operator
, which is a function of
, such that for some wavefunction
,
.
Solution
So,
It is now shown that
is unitary, i.e.
: