Phy5645:Problem 4.1 Solution: Difference between revisions

From PhyWiki
Jump to navigation Jump to search
(→‎Solution: Proved operator to be unitary.)
(→‎Solution: Fixed exponential of p)
 
Line 24: Line 24:
& = \left [ \sum_{m=0}^\infty \frac{a^m}{m!} \frac{d^m}{dx^m} \right ] \left [\sum_{n=0}^\infty \frac { \left . \psi^{(n)}(x) \right \vert_{x=0} }{n!}  x^n \right ] \\
& = \left [ \sum_{m=0}^\infty \frac{a^m}{m!} \frac{d^m}{dx^m} \right ] \left [\sum_{n=0}^\infty \frac { \left . \psi^{(n)}(x) \right \vert_{x=0} }{n!}  x^n \right ] \\


& = \exp \left ( a \cdot \frac{d^m}{dx^m} \right ) \psi(x) \\
& = \exp \left ( a \cdot \frac{d}{dx} \right ) \psi(x) \\


& = \exp \left ( a \cdot \frac{i}{\hbar} \cdot \frac{\hbar}{i} \frac{d^m}{dx^m} \right ) \psi(x) \\
& = \exp \left ( a \cdot \frac{i}{\hbar} \cdot \frac{\hbar}{i} \frac{d}{dx} \right ) \psi(x) \\


& = e^{ i \frac{a}{\hbar} \hat p } \psi(x)
& = e^{ i \frac{a}{\hbar} \hat p } \psi(x)

Latest revision as of 14:34, 19 November 2009

Problem

Prove that there is a unitary operator , which is a function of , such that for some wavefunction , .

Solution

So,

It is now shown that is unitary, i.e. :