Phy5645/angularmomcommutation/: Difference between revisions
Jump to navigation
Jump to search
(New page: '''Question:''' In the angular momentum basis, compute <math>\left \langle {l,m\left |{L_{x}^{2}} \right |l,m} \right \rangle </math> and <math>\left \langle {l,m\left |{L_{x}L_{y}} \righ...) |
No edit summary |
||
(3 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
''' | '''(a)''' <math>\left \langle {l,m\left |{L_{x}^{2}} \right |l,m} \right \rangle </math> | ||
- | Since <math>\hat{L}_{x}=\frac{\hat{L}_{+}+\hat{L}_{-}}{2},</math> | ||
<math>L_{x}^{2}=\tfrac{1}{4}(\hat{L}_{+}+\hat{L}_{-})^{2}=\tfrac{1}{4}(\hat{L}_{+}^{2}+\hat{L}_{-}^{2}+\hat{L}_{+}\hat{L}_{-}+\hat{L}_{-}\hat{L}_{+}).</math> | |||
By definition, <math>\hat{L}_{+}^{2}</math> and <math>\hat{L}_{-}^{2}</math> won't contribute because they reduce to an inner product of the form, <math>\left \langle {l,m\left | {l,m\pm 2} \right. } \right \rangle =0.</math> Therefore, the only contribution is from the last two terms: | |||
<math> | <math>\left \langle {l,m\left |{\hat{L}_{x}^{2}} \right |l,m} \right \rangle =\tfrac{1}{4}\left \lbrace {\left \langle {l,m\left |{\hat{L}_{+}\hat{L}_{-}+\hat{L}_{-}\hat{L}_{+}} \right |l,m} \right \rangle } \right \rbrace </math> | ||
<math>=\tfrac{1}{4}\left \lbrace {\left \langle {l,m\left |{\hat{L}_{+}\hat{L}_{-}} \right |l,m} \right \rangle +\left \langle {l,m\left |{\hat{L}_{-}\hat{L}_{+}} \right |l,m} \right \rangle } \right \rbrace </math> | |||
<math>\left \langle {l,m\left |{ | <math>=\frac{\hbar }{4}\sqrt {l(l+1)-m(m-1)} \left \langle {l,m\left |{\hat{L}_{+}} \right |l,m-1} \right \rangle +\frac{\hbar }{4}\sqrt {l(l+1)-m(m+1)} \left \langle {l,m\left |{\hat{L}_{-}} \right |l,m+1} \right \rangle </math> | ||
<math>=\frac{ | <math>=\frac{\hbar ^{2}}{4}\sqrt {l(l+1)-m(m-1)} \sqrt {l(l+1)-(m-1)m} \left \langle {l,m} \right | \left. {} {l,m} \right \rangle +\frac{\hbar ^{2}}{4}\sqrt {l(l+1)-m(m+1)} \sqrt {l(l+1)-(m+1)m} \left \langle {l,m} \right | \left. {} {l,m} \right \rangle </math> | ||
<math> | <math>=\frac{\hbar ^{2}}{4}\left \lbrace {l(l+1)-m(m-1)+l(l+1)-m(m+1)} \right \rbrace=\frac{\hbar ^{2}}{4}\left \lbrace {2l(l+1)-2m^{2}} \right \rbrace </math> | ||
<math> | <math>=\frac{\hbar ^{2}}{2}[l(l+1)-m^{2}]</math> | ||
<math> | '''(b)''' <math>\left \langle {l,m\left |{\hat{L}_{x}\hat{L}_{y}} \right |l,m} \right \rangle </math> | ||
<math>\hat{L}_{x}\hat{L}_{y}=\frac{\hat{L}_{+}+\hat{L}_{-}}{2}\frac{\hat{L}_{+}-\hat{L}_{-}}{2i}</math> | |||
<math>=\frac{1}{4i}(\hat{L}_{+}+\hat{L}_{-})(\hat{L}_{+}-\hat{L}_{-})=\frac{1}{4i}\left \lbrace {\hat{L}_{+}^{2}-\hat{L}_{-}^{2}-\hat{L}_{+}\hat{L}_{-}+\hat{L}_{-}\hat{L}_{+}} \right \rbrace </math> | |||
<math> | Again, <math>\hat{L}_{+}^{2}</math> and <math>\hat{L}_{-}^{2}</math> won't contribute. We now evaluate the remaining terms: | ||
<math>=\frac{1}{4i} | <math>=\frac{1}{4i}\left \langle {l,m\left |{\hat{L}_{-}\hat{L}_{+}-\hat{L}_{+}\hat{L}_{-}} \right |l,m} \right \rangle =\frac{1}{4i}\left \lbrace {\left \langle {l,m\left |{\hat{L}_{-}\hat{L}_{+}} \right |l,m} \right \rangle -\left \langle {l,m\left |{\hat{L}_{+}\hat{L}_{-}} \right |l,m} \right \rangle } \right \rbrace </math> | ||
<math>=\frac{ | <math>=\frac{\hbar }{4i}\left \lbrace {\sqrt {l(l+1)-m(m+1)} \left \langle {l,m\left |{\hat{L}_{-}} \right |l,m+1} \right \rangle -\sqrt {l(l+1)-m(m-1)} \left \langle {l,m\left |{\hat{L}_{+}} \right |l,m-1} \right \rangle } \right \rbrace </math> | ||
<math>=\frac{\hbar ^{2}}{4i}\left \lbrace {\sqrt {l(l+1)-m(m+1)} \sqrt {l(l+1)-(m+1)m} \left \langle {l,m} \right | \left. {} {l,m} \right \rangle -\sqrt {l(l+1)-m(m-1)} \sqrt {l(l+1)-(m-1)m} \left \langle {l,m} \right | \left. {} {l,m} \right \rangle } \right \rbrace </math> | |||
<math>=\frac{\hbar ^{2}}{4i}\left \lbrace {\sqrt {l(l+1)-m(m+1)} \sqrt {l(l+1)-(m+1)m} \left \langle { | |||
<math>=\frac{\hbar ^{2}}{4i}\left ({l(l+1)-m^{2}-m-l(l+1)+m^{2}-m} \right )</math> | <math>=\frac{\hbar ^{2}}{4i}\left ({l(l+1)-m^{2}-m-l(l+1)+m^{2}-m} \right )</math> | ||
Line 44: | Line 38: | ||
<math>=\frac{\hbar ^{2}}{4i}(-2m)=\frac{i\hbar ^{2}m}{2}</math> | <math>=\frac{\hbar ^{2}}{4i}(-2m)=\frac{i\hbar ^{2}m}{2}</math> | ||
Back to [[Eigenvalue Quantization#Problem|Eigenvalue Quantization]] |
Latest revision as of 13:39, 18 January 2014
(a)
Since
By definition, and won't contribute because they reduce to an inner product of the form, Therefore, the only contribution is from the last two terms:
(b)
Again, and won't contribute. We now evaluate the remaining terms:
Back to Eigenvalue Quantization