Phy5645/angularmomcommutation/: Difference between revisions

From PhyWiki
Jump to navigation Jump to search
(New page: '''Question:''' In the angular momentum basis, compute <math>\left \langle {l,m\left |{L_{x}^{2}} \right |l,m} \right \rangle </math> and <math>\left \langle {l,m\left |{L_{x}L_{y}} \righ...)
 
No edit summary
 
(3 intermediate revisions by 2 users not shown)
Line 1: Line 1:
'''Question:''' In the angular momentum basis, compute <math>\left \langle {l,m\left |{L_{x}^{2}} \right |l,m} \right \rangle </math> and <math>\left \langle {l,m\left |{L_{x}L_{y}} \right |l,m} \right \rangle </math>.
'''(a)''' <math>\left \langle {l,m\left |{L_{x}^{2}} \right |l,m} \right \rangle </math>


----
Since <math>\hat{L}_{x}=\frac{\hat{L}_{+}+\hat{L}_{-}}{2},</math>
'''Solution:'''


* <math>\left \langle {l,m\left |{L_{x}^{2}} \right |l,m} \right \rangle </math>
<math>L_{x}^{2}=\tfrac{1}{4}(\hat{L}_{+}+\hat{L}_{-})^{2}=\tfrac{1}{4}(\hat{L}_{+}^{2}+\hat{L}_{-}^{2}+\hat{L}_{+}\hat{L}_{-}+\hat{L}_{-}\hat{L}_{+}).</math>


Since <math>L_{x}=\frac{L_{+}+L_{-}}{2}</math>, we can obtain <math>L_{x}^{2}</math>;
By definition, <math>\hat{L}_{+}^{2}</math> and <math>\hat{L}_{-}^{2}</math> won't contribute because they reduce to an inner product of the form, <math>\left \langle {l,m\left | {l,m\pm 2} \right. } \right \rangle =0.</math> Therefore, the only contribution is from the last two terms:


<math>L_{x}^{2}=\frac{1}{4}(L_{+}+L_{-})^{2}=\frac{1}{4}(L_{+}^{2}-L_{-}^{2}+2L_{+}L_{-}+2L_{-}L_{+})</math>
<math>\left \langle {l,m\left |{\hat{L}_{x}^{2}} \right |l,m} \right \rangle =\tfrac{1}{4}\left \lbrace {\left \langle {l,m\left |{\hat{L}_{+}\hat{L}_{-}+\hat{L}_{-}\hat{L}_{+}} \right |l,m} \right \rangle } \right \rbrace </math>


By definition, <math>L_{+}^{2}</math> and <math>L_{-}^{2}</math> won't contribute because
<math>=\tfrac{1}{4}\left \lbrace {\left \langle {l,m\left |{\hat{L}_{+}\hat{L}_{-}} \right |l,m} \right \rangle +\left \langle {l,m\left |{\hat{L}_{-}\hat{L}_{+}} \right |l,m} \right \rangle } \right \rbrace </math>
<math>\left \langle {l,m\left |{L_{+}^{2}} \right |l,m} \right \rangle =\left \langle {l,m\left | {l,m+2} \right. } \right \rangle =0</math> and <math>\left \langle {l,m\left |{L_{-}^{2}} \right |l,m} \right \rangle =\left \langle {l,m\left | {l,m-2} \right. } \right \rangle =0</math>


<math>\left \langle {l,m\left |{L_{x}^{2}} \right |l,m} \right \rangle =\frac{1}{4}\left \lbrace {\left \langle {l,m\left |{2L_{+}L_{-}+2L_{-}L_{+}} \right |l,m} \right \rangle } \right \rbrace </math>
<math>=\frac{\hbar }{4}\sqrt {l(l+1)-m(m-1)} \left \langle {l,m\left |{\hat{L}_{+}} \right |l,m-1} \right \rangle +\frac{\hbar }{4}\sqrt {l(l+1)-m(m+1)} \left \langle {l,m\left |{\hat{L}_{-}} \right |l,m+1} \right \rangle </math>


<math>=\frac{1}{2}\left \lbrace {\left \langle {l,m\left |{L_{+}L_{-}} \right |l,m} \right \rangle +\left \langle {l,m\left |{L_{-}L_{+}} \right |l,m} \right \rangle } \right \rbrace </math>
<math>=\frac{\hbar ^{2}}{4}\sqrt {l(l+1)-m(m-1)} \sqrt {l(l+1)-(m-1)m} \left \langle {l,m} \right | \left. {} {l,m} \right \rangle +\frac{\hbar ^{2}}{4}\sqrt {l(l+1)-m(m+1)} \sqrt {l(l+1)-(m+1)m} \left \langle {l,m} \right | \left. {} {l,m} \right \rangle </math>


<math>\text{=}\frac{\hbar }{2}\sqrt {l(l+1)-m(m-1)} \left \langle {l,m\left |{L_{+}} \right |l,m-1} \right \rangle +\frac{\hbar }{2}\sqrt {l(l+1)-m(m+1)} \left \langle {l,m\left |{L_{-}} \right |l,m+1} \right \rangle </math>
<math>=\frac{\hbar ^{2}}{4}\left \lbrace {l(l+1)-m(m-1)+l(l+1)-m(m+1)} \right \rbrace=\frac{\hbar ^{2}}{4}\left \lbrace {2l(l+1)-2m^{2}} \right \rbrace </math>


<math>\text{=}\frac{\hbar ^{2}}{2}\sqrt {l(l+1)-m(m-1)} \sqrt {l(l+1)-(m-1)m} \left \langle {l,m} \right | \left. {} {l,m} \right \rangle +\frac{\hbar ^{2}}{2}\sqrt {l(l+1)-m(m+1)} \sqrt {l(l+1)-(m+1)m} \left \langle {l,m} \right | \left. {} {l,m} \right \rangle </math>
<math>=\frac{\hbar ^{2}}{2}[l(l+1)-m^{2}]</math>


<math>=\frac{\hbar ^{2}}{2}\left \lbrace {l(l+1)-m(m-1)+l(l+1)-m(m-1)} \right \rbrace </math>
<math>=\frac{\hbar ^{2}}{2}\left \lbrace {2l(l+1)-2m^{2}} \right \rbrace </math>


<math>=\hbar ^{2}(l(l+1)-m^{2})</math>
'''(b)''' <math>\left \langle {l,m\left |{\hat{L}_{x}\hat{L}_{y}} \right |l,m} \right \rangle </math>


<math>\hat{L}_{x}\hat{L}_{y}=\frac{\hat{L}_{+}+\hat{L}_{-}}{2}\frac{\hat{L}_{+}-\hat{L}_{-}}{2i}</math>


* <math>\left \langle {l,m\left |{L_{x}L_{y}} \right |l,m} \right \rangle </math>
<math>=\frac{1}{4i}(\hat{L}_{+}+\hat{L}_{-})(\hat{L}_{+}-\hat{L}_{-})=\frac{1}{4i}\left \lbrace {\hat{L}_{+}^{2}-\hat{L}_{-}^{2}-\hat{L}_{+}\hat{L}_{-}+\hat{L}_{-}\hat{L}_{+}} \right \rbrace </math>


<math>L_{x}L_{y}=\frac{L_{+}+L_{-}}{2}\frac{L_{+}-L_{-}}{2i}</math>
Again, <math>\hat{L}_{+}^{2}</math> and <math>\hat{L}_{-}^{2}</math> won't contribute.  We now evaluate the remaining terms:


<math>=\frac{1}{4i}(L_{+}+L_{-})(L_{+}-L_{-})=\frac{1}{4i}\left \lbrace {L_{+}^{2}-L_{-}^{2}-L_{+}L_{-}+L_{-}L_{+}} \right \rbrace </math>
<math>=\frac{1}{4i}\left \langle {l,m\left |{\hat{L}_{-}\hat{L}_{+}-\hat{L}_{+}\hat{L}_{-}} \right |l,m} \right \rangle =\frac{1}{4i}\left \lbrace {\left \langle {l,m\left |{\hat{L}_{-}\hat{L}_{+}} \right |l,m} \right \rangle -\left \langle {l,m\left |{\hat{L}_{+}\hat{L}_{-}} \right |l,m} \right \rangle } \right \rbrace </math>
Again, <math>L_{+}^{2}</math> and <math>L_{-}^{2}</math> won't contribute


<math>=\frac{1}{4i}\left \langle {lm\left |{L_{-}L_{+}-L_{+}L_{-}} \right |lm} \right \rangle =\frac{1}{4i}\left \lbrace {\left \langle {lm\left |{L_{-}L_{+}} \right |lm} \right \rangle -\left \langle {lm\left |{L_{+}L_{-}} \right |lm} \right \rangle } \right \rbrace </math>
<math>=\frac{\hbar }{4i}\left \lbrace {\sqrt {l(l+1)-m(m+1)} \left \langle {l,m\left |{\hat{L}_{-}} \right |l,m+1} \right \rangle -\sqrt {l(l+1)-m(m-1)} \left \langle {l,m\left |{\hat{L}_{+}} \right |l,m-1} \right \rangle } \right \rbrace </math>


<math>=\frac{\hbar }{4i}\left \lbrace {\sqrt {l(l+1)-m(m+1)} \left \langle {lm\left |{L_{-}} \right |lm+1} \right \rangle -\sqrt {l(l+1)-m(m-1)} \left \langle {lm\left |{L_{+}} \right |lm-1} \right \rangle } \right \rbrace </math>
<math>=\frac{\hbar ^{2}}{4i}\left \lbrace {\sqrt {l(l+1)-m(m+1)} \sqrt {l(l+1)-(m+1)m} \left \langle {l,m} \right | \left. {} {l,m} \right \rangle -\sqrt {l(l+1)-m(m-1)} \sqrt {l(l+1)-(m-1)m} \left \langle {l,m} \right | \left. {} {l,m} \right \rangle } \right \rbrace </math>
 
<math>=\frac{\hbar ^{2}}{4i}\left \lbrace {\sqrt {l(l+1)-m(m+1)} \sqrt {l(l+1)-(m+1)m} \left \langle {lm} \right | \left. {} {lm} \right \rangle -\sqrt {l(l+1)-m(m-1)} \sqrt {l(l+1)-(m-1)m} \left \langle {lm} \right | \left. {} {lm} \right \rangle } \right \rbrace </math>


<math>=\frac{\hbar ^{2}}{4i}\left ({l(l+1)-m^{2}-m-l(l+1)+m^{2}-m} \right )</math>
<math>=\frac{\hbar ^{2}}{4i}\left ({l(l+1)-m^{2}-m-l(l+1)+m^{2}-m} \right )</math>
Line 44: Line 38:
<math>=\frac{\hbar ^{2}}{4i}(-2m)=\frac{i\hbar ^{2}m}{2}</math>
<math>=\frac{\hbar ^{2}}{4i}(-2m)=\frac{i\hbar ^{2}m}{2}</math>


----
Back to [[Eigenvalue Quantization#Problem|Eigenvalue Quantization]]

Latest revision as of 13:39, 18 January 2014

(a)

Since

By definition, and won't contribute because they reduce to an inner product of the form, Therefore, the only contribution is from the last two terms:


(b)

Again, and won't contribute. We now evaluate the remaining terms:

Back to Eigenvalue Quantization