Phy5645/HydrogenAtomProblem: Difference between revisions

From PhyWiki
Jump to navigation Jump to search
(New page: This problem taken from ''Quantum Mechanics: Concepts and Applications'' by Nouredine Zettili: Exercise 6.3 '''An electron in a hydrogen atom is in the energy eigenstate''' <math> \psi_{...)
 
No edit summary
 
(8 intermediate revisions by 2 users not shown)
Line 1: Line 1:
This problem taken from ''Quantum Mechanics: Concepts and
'''(a)''' To find <math>N,\!</math> we simply take the volume integral of  <math>\psi\psi^\ast.</math>  Note that <math>Y_1^{-1}\left(\theta, \phi \right) = \sqrt{\frac{3}{8\pi}}\sin(\theta)e^{-i\phi},</math> and thus the <math>\phi\!</math> dependence in the integral vanishes.
Applications'' by Nouredine Zettili: Exercise 6.3


'''An electron in a hydrogen atom is in the energy eigenstate''' <math>
<math>1=\frac{3}{8\pi}\int_{\phi= 0}^{2\pi} \int_{\theta = 0}^{\pi} \int_{r=0}^{\infty}
\psi_{2,1,1} \left(r, \theta, \phi \right) = Nre^{-\frac{r}
N^{2}r^{2}\sin^{2}{\theta}e^{-r/a}r^{2}\sin{\theta}\,dr\,d\theta\,d\phi</math>
{2a_o}}Y_{1,-1}\left(\theta, \phi \right)</math>. '''(a) Find the normalization constant, N.'''


Take the volume integral of  <math>\psi\psi*</math>.  <math>Y_{1,-1}\left(\theta, \phi
<math>=\tfrac{3}{4}N^2 \int_{0}^{\pi} \sin^{3}{\theta}\,d\theta \int_{0}^{\infty}r^{4}e^{-r/a}\,dr=24a^5N^2</math>
\right) = \sqrt{\frac{3}{8\pi}}sin(\theta)e^{-i\phi} </math> and as such the
phi dependence in the integral vanishes :


<math>\int _{\phi= 0}^{2\pi} \int_{\theta = 0}^{\pi} \int_{r=0}^{\infty}  
Therefore, <math>N = \frac{1}{\sqrt{24a^5}}.</math>
N^{2}r^{2}sin^{2}(\theta) \frac{3}{8\pi}e^{-\frac{r}
{a_o}}r^{2}sin(\theta)drd\theta d\phi</math>


<math>\Longrightarrow \frac{3N^2}{8\pi} \int_{0}^{\pi} sin^{3}(\theta)d
'''(b)'''
\theta \int_{0}^{2\pi} e^{-2i\phi}d\phi \int_{ 0}^{\infty}r^{4}e^{-
\frac{r}{a_o}}dr = 1 </math>


<math>\Longrightarrow \frac{3N^2}{8\pi} \frac{4}{3}(2\pi)(24a^5) = 1</math>
<math>\psi\psi^\ast(r,\theta,\phi) = \frac{1}{24a^5}r^{2}\sin^{2}(\theta)\left(\frac{3}{8\pi}\right)e^{-r/a}</math>


Therefore <math>N^{2}\left(24a^{5}\right) = 1 </math> so <math>N = \sqrt\frac{1}{24a^5}</math>
<math>=\left(\frac{1}{24a^5}\right)a^2\sin^{2}\left(\frac{\pi}{4}\right)\left(\frac{3}{8\pi}\right)e^{-1} =  
\frac{\pi e^{-1}}{128a^3} = \frac{0.009}{a^3}</math>


'''(b)What is the probability per unit volume of finding the electron at''' <math> r = a_{o},  \theta = 45^{\circ}, \phi = 60^{\circ}? </math>
'''(c)''' We simply integrate <math>\psi\psi^\ast\!</math> over the spherical shell given by varying <math>\phi\!</math> and <math>\theta\!</math> with <math>r = 2a.\!</math> The spherical harmonics, as we have defined them, are already normalized, so that the probability per unit radial coordinate is


<math>\psi\psi* = N^{2}r^{2}sin^{2}(\theta)\left(\frac{3}{8\pi}\right)e^{-
<math>\frac{dP}{dr}=\left(\frac{1}{24{a}^5}\right)(2a)^{4}e^{-2} = \frac{2e^{-2}}{3a} = \frac{0.0902}{a}.</math>
\frac{r}{a_o}}</math>


<math>\Longrightarrow \left(\frac{1}{24{a_o}^5}\right) {a_o}^2
'''(d)''' We may read the orbital and magnetic quantum numbers directly off of the spherical harmonic, they are <math>l=1\!</math> and <math>m=-1.\!</math> Therefore,
sin^{2}\left(\frac{\pi}{4}\right)\left(\frac{3}{8\pi}\right)e^{-1} =  
\left(\frac{\pi e^{-1}}{128{a_o}^3}\right) = \frac{0.009}{{a_o}^3}</math>


<math>\langle\hat{\mathbf{L}}^2\rangle=2\hbar^{2}</math>


'''(c) What is the probability per unit radial interval (dr) of finding the electron at''' <math> a =a_{o} ? </math>
and


Average over <math>\phi</math> and <math>\theta</math> at <math>r = 2a_{o}</math>
<math>\langle\hat{L}_z\rangle=-\hbar.</math>


<math>\left| Y_{1,-1}\right|^2 = \left(\frac{3}{8\pi}\right)sin^{2}(\theta)
Back to [[Hydrogen Atom#Problems|Hydrogen Atom]]
= \left(\frac{3}{16\pi}\right)</math>
<math>\psi\psi* =  N^{2}r^{2}e^{-\frac{r}{a}}s \left| Y_{1,-1}\right|^{2} </math>
 
<math>\Longrightarrow \left(\frac{1}{24{a}^5}\right)(2a)^{2}e^{-\frac{2a}
{a}}\left(\frac{3}{16\pi}\right) = \left(\frac{1}{32\pi a}
\right)e^{-2} = \frac{0.0013}{a}</math>
 
'''(d) If''' <math> \mathbf{ \hat L^2}</math> '''and''' <math>\mathbf{ \hat L_{z}}</math> '''are made, what will the results be?'''
 
l=1, m = -1  are the l and m of the eigenstate <math>Y_{1,-1}(\theta, \phi)</math>
 
<math>\hat L^2 = \hbar^{2} l (l +1) = 2\hbar^{2} </math>
 
<math>\hat L_z = \hbar m = -\hbar </math>

Latest revision as of 13:43, 18 January 2014

(a) To find we simply take the volume integral of Note that and thus the dependence in the integral vanishes.

Therefore,

(b)

(c) We simply integrate over the spherical shell given by varying and with The spherical harmonics, as we have defined them, are already normalized, so that the probability per unit radial coordinate is

(d) We may read the orbital and magnetic quantum numbers directly off of the spherical harmonic, they are and Therefore,

and

Back to Hydrogen Atom