Phy5645/Problem 1D sample: Difference between revisions
Jump to navigation
Jump to search
mNo edit summary |
No edit summary |
||
(6 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
The Schrödinger equation takes the form, | |||
:<math>-\frac{\hbar^2}{2m}\frac{d^2\psi(x,y,z)}{dx^2}+\left(X(x)+Y(y)+Z(z)\right)\psi(x,y,z)=E\psi(x,y,z).</math> | |||
<math> | |||
Let us assume that <math>\psi</math> has the form, <math>\psi(x,y,z)=\Phi(x) \Delta(y) \Omega (z).\!</math> Then | |||
:<math> | :<math> | ||
\begin{align} | \begin{align} | ||
-\frac{\hbar^2}{2m} \left[ \frac{d^2\Phi(x)}{dx^2} \Delta(y) \Omega (z) + \Phi(x)\frac{d^2\Delta(y)}{dy^2} \Omega (z) + \Phi(x) \Delta (y)\frac{d^2\Omega(z)}{dz^2} \right] \\ | -\frac{\hbar^2}{2m} \left[ \frac{d^2\Phi(x)}{dx^2} \Delta(y) \Omega (z) + \Phi(x)\frac{d^2\Delta(y)}{dy^2} \Omega (z) + \Phi(x) \Delta (y)\frac{d^2\Omega(z)}{dz^2} \right] \\ | ||
+ \left[X(x)+Y(y)+Z(z)\right]\Phi(x) \Delta(y) \Omega (z) &= E\Phi(x) \Delta(y) \Omega (z) | + \left[X(x)+Y(y)+Z(z)\right]\Phi(x) \Delta(y) \Omega (z) &= E\Phi(x) \Delta(y) \Omega (z). | ||
\end{align} | \end{align} | ||
</math> | </math> | ||
Dividing by <math>\psi(x,y,z) \!</math> | Dividing by <math>\psi(x,y,z),\!</math> we obtain | ||
:<math> | :<math> | ||
Line 36: | Line 22: | ||
</math> | </math> | ||
We | We may now separate the left-hand side into three parts, each depending on only one of the three coordinates <math>x,\,y,</math> and <math>z.\!</math> Each of these parts must be equal to a constant. Therefore, | ||
:<math> | :<math> | ||
-\frac{\hbar^2}{2m | -\frac{\hbar^2}{2m}\frac{d^2\Phi(x)}{dx^2} + X(x)\Phi(x) = E_x\Phi(x) </math> | ||
:<math> | :<math> | ||
-\frac{\hbar^2}{2m | -\frac{\hbar^2}{2m}\frac{d^2\Delta(y)}{dy^2} + Y(y)\Delta(y) = E_y\Delta(y) </math> | ||
:<math> | :<math> | ||
-\frac{\hbar^2}{2m | -\frac{\hbar^2}{2m}\frac{d^2\Omega(z)}{dz^2} + Z(z)\Omega(z) = E_z\Omega(z), </math> | ||
where <math> E_x \!</math>, <math> E_y \!</math> and <math> E_z \!</math> are constants and <math> E = E_x+E_y+E_z \!</math> | where <math> E_x,\!</math>, <math> E_y,\!</math> and <math> E_z\!</math> are constants and <math> E = E_x+E_y+E_z.\!</math> | ||
Hence, the three-dimensional problem has been divided into three one-dimensional problems where the total energy <math>E</math> is the sum of the energies <math> E_x,\!</math> <math>E_y,\!</math> and <math>E_z\!</math> in each dimension. | |||
Back to [[Motion in One Dimension#Problem|Motion in One Dimension]] |
Latest revision as of 13:28, 18 January 2014
The Schrödinger equation takes the form,
Let us assume that has the form, Then
Dividing by we obtain
We may now separate the left-hand side into three parts, each depending on only one of the three coordinates and Each of these parts must be equal to a constant. Therefore,
where , and are constants and
Hence, the three-dimensional problem has been divided into three one-dimensional problems where the total energy is the sum of the energies and in each dimension.
Back to Motion in One Dimension