Commutation Problem: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
(4 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
(a) | (a) | ||
Line 17: | Line 4: | ||
\begin{align} | \begin{align} | ||
&[x,p^{2}_{x}f(x)] \\ | &[\hat{x},\hat{p}^{2}_{x}f(\hat{x})] \\ | ||
&=[x, | &=[\hat{x},\hat{p}_{x}]\hat{p}_{x}f(\hat{x})+\hat{p}_{x}[\hat{x},\hat{p}_{x}f(\hat{x})] \\ | ||
&=i\hbar | &=i\hbar \hat{p}_{x}f(\hat{x}) + \hat{p}^{2}_{x}[\hat{x},f(\hat{x})] + \hat{p}_{x}[\hat{x},\hat{p}_{x}]f(\hat{x}) \\ | ||
&=i\hbar | &=i\hbar \hat{p}_{x}f(\hat{x})+ i\hbar \hat{p}_{x}f(\hat{x}) \\ | ||
&=2i\hbar | &=2i\hbar \hat{p}_{x}f(\hat{x}) | ||
\end{align} | \end{align} | ||
Line 33: | Line 20: | ||
\begin{align} | \begin{align} | ||
&[x, | &[\hat{x},\hat{p}_{x}f(\hat{x})\hat{p}_{x}] \\ | ||
&=[x, | &=[\hat{x},\hat{p}_{x}]f(\hat{x})\hat{p}_{x}+\hat{p}_{x}[\hat{x},f(\hat{x})\hat{p}_{x}] \\ | ||
&=i\hbar f(x) | &=i\hbar f(\hat{x})\hat{p}_{x} + \hat{p}_{x}[\hat{x},\hat{p}_{x}]f(\hat{x}) + \hat{p}_{x}[\hat{x},f(\hat{x})]\hat{p}_{x} \\ | ||
&=i\hbar [f(x) | &=i\hbar [f(\hat{x})\hat{p}_{x}+\hat{p}_{x}f(\hat{x})] | ||
\end{align} | \end{align} | ||
Line 48: | Line 35: | ||
\begin{align} | \begin{align} | ||
&[ | &[\hat{p}_{x},\hat{p}^{2}_{x}f(\hat{x})] \\ | ||
&=[ | &=[\hat{p}_{x},\hat{p}^{2}_{x}]f(\hat{x})+\hat{p}^{2}_{x}[\hat{p}_{x},f(\hat{x})] \\ | ||
&= p^{2}_{x} [ | &= \hat{p}^{2}_{x} [\hat{p}_{x},f(\hat{x})] | ||
\end{align} | \end{align} | ||
</math> | </math> | ||
Line 59: | Line 46: | ||
\begin{align} | \begin{align} | ||
&[ | &[\hat{p}_{x},f(\hat{x})]\psi(x) \\ | ||
&=-i\hbar \frac{d}{dx}(f(x)\psi(x))+i\hbar f(x)\frac{d\psi(x)}{dx} \\ | &=-i\hbar \frac{d}{dx}(f(x)\psi(x))+i\hbar f(x)\frac{d\psi(x)}{dx} \\ | ||
&=-i\hbar \frac{df}{dx}\psi(x)-i\hbar f(x)\frac{d\psi(x)}{dx} +i\hbar f(x)\frac{d\psi(x)}{dx} \\ | &=-i\hbar \frac{df}{dx}\psi(x)-i\hbar f(x)\frac{d\psi(x)}{dx} +i\hbar f(x)\frac{d\psi(x)}{dx} \\ | ||
Line 66: | Line 53: | ||
</math> | </math> | ||
So | So | ||
<math>[ | <math>[\hat{p}_{x},f(\hat{x})] =-i\hbar \frac{df(\hat{x})}{dx} | ||
=-i\hbar \frac{df}{dx} | |||
</math> | </math> | ||
and so | and so | ||
<math>[ | <math>[\hat{p}_{x},\hat{p}^{2}_{x}f(\hat{x})] =-i\hbar | ||
=-i\hbar p^{2}_{x}\frac{df}{dx} | \hat{p}^{2}_{x}\frac{df(\hat{x})}{dx} </math> | ||
</math> | |||
Line 86: | Line 71: | ||
\begin{align} | \begin{align} | ||
&[ | &[\hat{p}_{x},\hat{p}_{x}f(\hat{x})\hat{p}_{x}] \\ | ||
&= | &=\hat{p}_{x}f(\hat{x})[\hat{p}_{x},\hat{p}_{x}]+[\hat{p}_{x},\hat{p}_{x}f(\hat{x})]\hat{p}_{x} \\ | ||
&= | &=\hat{p}_{x}[\hat{p}_{x},f(\hat{x})]\hat{p}_{x}+[\hat{p}_{x},\hat{p}_{x}]f(\hat{x})\hat{p}_{x} \\ | ||
&=-i\hbar | &=-i\hbar \hat{p}_{x}\frac{df(\hat{x})}{dx}\hat{p}_{x} | ||
\end{align} | \end{align} | ||
</math> | </math> | ||
Back to [[Commutation Relations and Simultaneous Eigenvalues#Problems|Commutation Relations and Simultaneous Eigenvalues]] |