Phy5645/Cross Section Relation: Difference between revisions

From PhyWiki
Jump to navigation Jump to search
(New page: Consider the scattering of a particle from a real spherically symmetric potential. If <math>\frac{\mathrm{d} \sigma (\theta) }{\mathrm{d} \Omega }</math> is the differential cross section ...)
 
 
(14 intermediate revisions by 3 users not shown)
Line 1: Line 1:
Consider the scattering of a particle from a real spherically symmetric potential. If <math>\frac{\mathrm{d} \sigma (\theta) }{\mathrm{d} \Omega }</math> is the differential cross section and <math>\sigma</math> is the total cross section, show that
The differential cross section is related to the scattering amplitude through
<math>\sigma \leq \frac{4\pi}{k}\sqrt{\frac{\mathrm{d} \sigma (0) }{\mathrm{d} \Omega }}</math>


for a general central potential using the partial-wave expansion of the scattering amplitude and the cross section.
<math>\frac{d\sigma (\theta)}{d\Omega} = |f_{k}(\theta)|^2.</math>


Solution:
Since <math>| f |^2 = (\Re e\,f )^2 + (\Im m\,f )^2 \geq  (\Im m f )^2,</math>


The differential cross section is related to the scattering amplitude through
we obtain
<math>\frac{\mathrm{d} \sigma (\theta)}{\mathrm{d} \Omega} = |f_{k}(\theta)|^2</math>
 
Since <math>| f |^2 = (Re f )^2 + (Im f )^2 \geq (Im f )^2</math>
<math> \frac{d\sigma (\theta)}{d\Omega} \geq (\Im m[f_{k}(\theta)])^{2}.</math>
therefore, \frac{\mathrm{d} \sigma (\theta)}{\mathrm{d} \Omega} \geq (Im f_{k}(\theta))^{2}
On the other hand, from the optical theorem we have
<math> \sigma =\frac{4\pi}{k} Im f_{k}(\theta)) \leq \frac{4\pi}{k}\sqrt{\frac{\mathrm{d} \sigma (0) }{\mathrm{d} \Omega }}</math>


For a central potential the scattering amplitude is
On the other hand, the optical theorem states that
<math>f_k(\theta) = \frac{1}{k}\sum_{l = 0}^{\infty}(2l + 1) e^{i\delta _{l}} sin\delta _{l} P_{l} (cos \theta)</math>


and, in terms of this, the differential cross section is
<math> \sigma =\frac{4\pi}{k} \Im m[f_{k}(0)],</math>
<math>\frac{\mathrm{d} \sigma (\theta)}{\mathrm{d} \Omega} = \frac{1}{k^2}\sum_{l = 0}^{\infty}\sum_{l^{\prime} = 0}^{\infty}(2l + 1)(2l^{\prime} + 1) e^{i(\delta _{l}- \delta _{l^{\prime}})} sin\delta _{l}sin\delta _{l^{\prime}} P_{l} (cos \theta)P_{l^{\prime}} (cos \theta)</math>
The total cross section is
<math>\sigma = \frac{4\pi ^2}{k^2}\sum_{l = 0}^{\infty}(2l + 1) sin^2\delta _{l}</math>


Since <math> P_{l^} (1)= 1</math>  we can write
so that


<math>\frac{\mathrm{d} \sigma (0)}{\mathrm{d} \Omega} = \frac{1}{k^2}\left [\sum_{l = 0}^{\infty}(2l + 1) e^{i\delta _{l}} sin\delta _{l} \right ]^2</math>
<math>\frac{d\sigma (0)}{d\Omega}\geq \frac{k^2\sigma ^{2}}{16\pi ^{2}}.</math>


<math>\frac{\mathrm{d} \sigma (0)}{\mathrm{d} \Omega} = \frac{1}{k^2}\left [\sum_{l = 0}^{\infty}(2l + 1) sin\delta _{l}cos\delta _{l} + isin^2\delta _{l} \right ]^2</math>
From this, it follows that <math>\sigma\leq \frac{4\pi}{k}\sqrt{\frac{d\sigma (0)}{d\Omega}}.</math>


<math>\frac{\mathrm{d} \sigma (0)}{\mathrm{d} \Omega} = \frac{1}{k^2}\left [\sum_{l = 0}^{\infty}(2l + 1) sin\delta _{l}cos\delta _{l}\right ]^2 +\frac{1}{k^2}\left [\sum_{l = 0}^{\infty}(2l + 1) sin^2\delta _{l}  \right ]^2</math>
Back to [[Central Potential Scattering and Phase Shifts#Problems|Central Potential Scattering and Phase Shifts]]
<math>\Rightarrow  \frac{\mathrm{d} \sigma (0)}{\mathrm{d} \Omega} \geq \frac{1}{k^2}\left [\sum_{l = 0}^{\infty}(2l + 1) sin^2\delta _{l}  \right ]^2 = \frac{k^2\sigma ^{2}}{16\pi ^{2}}</math>

Latest revision as of 13:50, 18 January 2014

The differential cross section is related to the scattering amplitude through

Since

we obtain

On the other hand, the optical theorem states that

so that

From this, it follows that

Back to Central Potential Scattering and Phase Shifts