Phy5645/Hydrogen Atom WKB: Difference between revisions

From PhyWiki
Jump to navigation Jump to search
No edit summary
No edit summary
 
(10 intermediate revisions by 2 users not shown)
Line 1: Line 1:
Use WKB approximation to estimate energy spectrum for Hydrogen atom.
The WKB approximation is given by
Hint: <math>\text{use the relation let  r}^{2}-Vr+T=(r_{1}-r)(r_{2}-r)</math>
</math>
----
----
The approximation is:


<math>\int {P(r)} dr=(n+\frac{1}{2})\pi \hbar</math>
<math>\int_{r_1}^{r_2} p(r)\,dr=(n+\tfrac{1}{2})\pi \hbar,</math>


<math>\text{P(r)=}\sqrt {2m(E-V(r))} =\sqrt {2m(E-\left ({\frac{\hbar ^{2}l(l+1)}{2mr^{2}}-\frac{e^{2}}{r}} \right )} )</math>
where


<math>\int\limits_{r1}^{r2} {\sqrt {2m(E-\frac{\hbar ^{2}l(l+1)}{2mr^{2}}+\frac{e^{2}}{r})} }dr=(n+\frac{1}{2})\pi \hbar </math> where r1 and r2 are turning points in this case.
<math>p(r)=\sqrt {2m(E-V_{\text{eff}}(r))} =\sqrt {2m\left (E+\frac{e^{2}}{r}-{\frac{\hbar ^{2}(l+\tfrac{1}{2})^2}{2mr^{2}}}\right )}.</math>


<math>\sqrt {2mE} \int\limits_{r1}^{r2} {(1-}\frac{\hbar ^{2}l(l+1)}{2mr^{2}E}+\frac{e^{2}}{Er})^{1/2}dr=(n+\frac{1}{2})\pi \hbar </math>
We may rewrite the above as
if we do this substitution:
<math>\text{let T=}-\frac{\hbar ^{2}l(l+1)}{2mE}\text{  and V=}-\frac{e^{2}}{r}\text{    }</math>


<math>\sqrt {2mE} \int\limits_{r1}^{r2} {(1+\frac{T}{r^{2}}}+\frac{V}{r})^{1/2}dr=(n+\frac{1}{2})\pi \hbar \text{ }</math>
<math>\sqrt{2mE}\int_{r_1}^{r_2}\sqrt{1-\frac{\hbar^{2}(l+\tfrac{1}{2})^2}{2mEr^{2}}+\frac{e^{2}}{Er}}\,dr=(n+\tfrac{1}{2})\pi \hbar,</math>


<math>\text{the relation  r}^{2}-Vr+T=(r_{1}-r)(r_{2}-r)</math>
or, making the substitution,


<math>\sqrt {2mE} \int\limits_{r1}^{r2} {\left ({\frac{(r_{1}-r)(r_{2}-r)}{r^{2}}} \right )^{1/2}dr=(n+\frac{1}{2})\pi \hbar }</math>
<math>T=-\frac{\hbar^{2}(l+\tfrac{1}{2})}{2mE}</math> and <math>V=\frac{e^{2}}{E},</math>


<math>\text{ use definition  let  }\int\limits_{r1}^{r2} {\left ({\frac{(x-a)(x-b)}{x^{2}}} \right )^{1/2}dx}=\frac{\pi }{2}(\sqrt {b} -\sqrt {a} )^{2}</math>
<math>\sqrt{2mE}\int_{r_1}^{r_2}\sqrt{1-\frac{V}{r}+\frac{T}{r^{2}}}\,dr=(n+\tfrac{1}{2})\pi \hbar.</math>


<math>\sqrt {2mE} *\frac{\pi }{2}*(\sqrt {r_{2}} -\sqrt {r_{1}} )^{2}=(n+\frac{1}{2})\pi \hbar </math>
Using the fact that <math>r^{2}-Vr+T=(r_{1}-r)(r_{2}-r)\!</math> and that


<math>\sqrt {2mE} *\frac{\pi }{2}*(r_{2}+r_{1}-2\sqrt {r_{1}r_{2}} )=(n+\frac{1}{2})\pi \hbar </math>
<math>\int_{r_1}^{r_2}\sqrt{{\frac{(x-r_1)(x-r_2)}{x^{2}}}}\,dx=\frac{\pi }{2}(\sqrt {r_2} -\sqrt {r_1} )^{2},</math>


<math>\text{let r}^{2}-Vr+T=(r_{1}-r)(r_{2}-r)=r^{2}-(r_{1}+r_{2})+r_{1}r_{2}</math>
we obtain


<math>\text{so V=}(r_{1}+r_{2})\text{   and T=}r_{1}r_{2}</math>
<math>\frac{\pi}{2}\sqrt {2mE}(\sqrt {r_{2}} -\sqrt {r_{1}} )^{2}=(n+\tfrac{1}{2})\pi \hbar.</math>


<math>\sqrt {2mE} *\frac{\pi }{2}*(V-2\sqrt {T} )=(n+\frac{1}{2})\pi \hbar </math>
We now observe that <math>r^{2}-Vr+T=(r_{1}-r)(r_{2}-r)=r^{2}-(r_{1}+r_{2})r+r_{1}r_{2},\!</math> so that


<math>\sqrt {2mE} \left ({-\frac{e^{2}}{E}-2\sqrt {-\frac{\hbar ^{2}l(l+1)}{2mE}} } \right )=(n+\frac{1}{2})\pi \hbar </math>
<math>V=r_{1}+r_{2}\!</math> and <math>T=r_{1}r_{2}.\!</math>


<math>-e^{2}\sqrt {\frac{2m}{E}} -2\sqrt {\hbar ^{2}l(l+1)} =2\hbar (n+\frac{1}{2})</math>
We thus obtain


<math>\text{ }2\hbar (n+\frac{1}{2})+2\hbar \sqrt {l(l+1)} =e^{2}\sqrt {\frac{2m}{-E}} </math>
<math>\frac{\pi }{2}\sqrt {2mE}(V-2\sqrt {T} )=(n+\tfrac{1}{2})\pi \hbar,</math>


<math>\frac{4\hbar ^{2}\left ({n+\frac{1}{2}+\sqrt {l(l+1)} } \right )^{2}}{2me^{4}}=\frac{1}{-E}\text{ }</math>
or


<math>\text{E=}\frac{-me^{4}}{2\hbar ^{2}\left ({n+\frac{1}{2}+\sqrt {l(l+1)} } \right )^{2}}</math>
<math>\sqrt {2mE} \left ({-\frac{e^{2}}{E}-2\sqrt {-\frac{\hbar ^{2}(l+\tfrac{1}{2})^2}{2mE}} } \right )=(n+\tfrac{1}{2})\pi \hbar.</math>
 
This equation simplifies to
 
<math>-e^{2}\sqrt {-\frac{2m}{E}} -(2\ell+1)\hbar =(2n+1)\hbar.</math>
 
We may now easily solve for <math>E,\!</math> obtaining
 
<math>E=-\frac{me^{4}}{2\hbar ^{2}(n+\ell+1)^{2}}.</math>
 
Note that this is exactly the spectrum that we would obtain from an exact solution of the Coulomb problem.
 
Back to [[WKB in Spherical Coordinates#Problem|WKB in Spherical Coordinates]]

Latest revision as of 13:45, 18 January 2014

The WKB approximation is given by

where

We may rewrite the above as

or, making the substitution,

and

Using the fact that and that

we obtain

We now observe that so that

and

We thus obtain

or

This equation simplifies to

We may now easily solve for obtaining

Note that this is exactly the spectrum that we would obtain from an exact solution of the Coulomb problem.

Back to WKB in Spherical Coordinates