Phy5645/schrodingerequationhomework2: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
(18 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
By definition: | |||
<math>\frac{\partial\rho}{\partial t}=\frac{\partial}{\partial t}\sum_{i}\rho_{i}(\mathbf{r},t)</math> | |||
<math>\ | <math>=\left.\sum_{i}\int\cdots\int d^{3}\mathbf{r}_{1}\,\cdots\,d^{3}\mathbf{r}_{i-1}\,d^{3}\mathbf{r}_{i+1}\,\cdots\,d^{3}\mathbf{r}_{N}\left (\Psi^{\star}\frac{\partial\Psi}{\partial t}+\frac{\partial\Psi^{\star}}{\partial t}\Psi\right )\right |_{\mathbf{r}_i=\mathbf{r}}</math> | ||
<math>\ | <math>=\sum_{i}\left. \rho_{i}(\mathbf{r}_{i},t)\right |_{\mathbf{r}_i=\mathbf{r}} \quad (1)</math> | ||
<math>\ | The wave function of the many-particle system <math>\Psi(\textbf{r}_{1},\textbf{r}_{2},\ldots,\textbf{r}_{N};t)</math> satisfies the following Schrödinger equation: | ||
<math>\ | <math>\begin{cases} | ||
i\hbar\frac{\partial\Psi}{\partial t}=\sum_{k}(-\frac{\hbar^{2}}{2m}\nabla^{2})\Psi+\sum_{jk}v_{jk}\Psi\\ | |||
-i\hbar\frac{\partial\Psi^{\star}}{\partial t}=\sum_{k}(-\frac{\hbar^{2}}{2m}\nabla_{k}^{2})\Psi^{\star}+\sum_{jk}v_{jk}\Psi^{\star}\end{cases}</math> | |||
<math>\frac{\partial\ | If we substitute <math>\frac{\partial\Psi}{\partial t}</math> and <math>\frac{\partial\Psi^{\star}}{\partial t}</math> into formula <math>(1)</math>, we obtain | ||
<math> | <math>\frac{\partial\rho_{i}}{\partial t}=\frac{i\hbar}{2m}\int\cdots\int d^{3}\mathbf{r}_{1}\,\cdots\,d^{3}\mathbf{r}_{i-1}\,d^{3}\mathbf{r}_{i+1}\,\cdots\,d^{3}\mathbf{r}_{N}\sum_{k}(\Psi^{\star}\nabla_{k}^{2}\Psi-\Psi\nabla_{k}^{2}\Psi^{\star})</math> | ||
<math>\frac{\ | <math>=\frac{i\hbar}{2m}\int\cdots\int d^{3}\mathbf{r}_{1}\,\cdots\,d^{3}\mathbf{r}_{i-1}\,d^{3}\mathbf{r}_{i+1}\,\cdots\,d^{3}\mathbf{r}_{N}\sum_{k}\nabla_{k}\cdot(\Psi^{\star}\nabla_{k}\Psi-\Psi\nabla_{k}\Psi^{\star}),</math> | ||
<math> | or, taking the sum over <math>i</math>, | ||
<math>= | <math>\frac{\partial\rho}{\partial t}=\frac{i\hbar}{2m}\sum_{i}\left.\int\cdots\int d^{3}\mathbf{r}_{1}\,\cdots\,d^{3}\mathbf{r}_{i-1}\,d^{3}\mathbf{r}_{i+1}\,\cdots\,d^{3}\mathbf{r}_{N}\sum_{k}\nabla_{k}\cdot(\Psi^{\star}\nabla_{k}\Psi-\Psi\nabla_{k}\Psi^{\star})\right |_{\mathbf{r}_i=\mathbf{r}}.</math> | ||
<math>\ | Let us now consider terms for which <math>i\neq k.</math> In these cases, we may use Gauss' Theorem, along with the requirement that <math>\lim_{r_k\rightarrow\infty}\Psi^{\ast}\nabla_{k}\Psi=0</math> for all <math>k,</math> to show that these terms must vanish. Therefore, | ||
<math> | <math>\frac{\partial\rho}{\partial t}=\frac{i\hbar}{2m}\sum_{i}\left.\int\cdots\int d^{3}\mathbf{r}_{1}\,\cdots\,d^{3}\mathbf{r}_{i-1}\,d^{3}\mathbf{r}_{i+1}\,\cdots\,d^{3}\mathbf{r}_{N}\nabla_{i}\cdot(\Psi^{\star}\nabla_{i}\Psi-\Psi\nabla_{i}\Psi^{\star})\right |_{\mathbf{r}_i=\mathbf{r}}</math> | ||
<math>=\sum_{i}\ | <math>=-\sum_{i}\nabla\cdot\mathbf{j}_{i}(\mathbf{r},t)=-\nabla\cdot\mathbf{j}(\mathbf{r},t),</math> | ||
or | |||
<math>\frac{\partial\rho}{\partial t} | <math>\frac{\partial\rho}{\partial t}+\nabla\cdot\mathbf{j}=0.</math> | ||
Back to [[Relation Between the Wave Function and Probability Density#Problems|Relation Between the Wave Function and Probability Density]] |
Latest revision as of 13:21, 18 January 2014
By definition:
The wave function of the many-particle system satisfies the following Schrödinger equation:
If we substitute and into formula , we obtain
or, taking the sum over ,
Let us now consider terms for which In these cases, we may use Gauss' Theorem, along with the requirement that for all to show that these terms must vanish. Therefore,
or
Back to Relation Between the Wave Function and Probability Density