Phy5645/schrodingerequationhomework2: Difference between revisions
No edit summary |
No edit summary |
||
(9 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
By definition: | By definition: | ||
<math>\frac{\partial\rho}{\partial t}=\frac{\partial}{\partial t}\sum_{i}\rho_{i}(\ | <math>\frac{\partial\rho}{\partial t}=\frac{\partial}{\partial t}\sum_{i}\rho_{i}(\mathbf{r},t)</math> | ||
<math>=\sum_{i}\int\cdots\int d^{3} | <math>=\left.\sum_{i}\int\cdots\int d^{3}\mathbf{r}_{1}\,\cdots\,d^{3}\mathbf{r}_{i-1}\,d^{3}\mathbf{r}_{i+1}\,\cdots\,d^{3}\mathbf{r}_{N}\left (\Psi^{\star}\frac{\partial\Psi}{\partial t}+\frac{\partial\Psi^{\star}}{\partial t}\Psi\right )\right |_{\mathbf{r}_i=\mathbf{r}}</math> | ||
<math>=\sum_{i}\rho_{i}(\ | <math>=\sum_{i}\left. \rho_{i}(\mathbf{r}_{i},t)\right |_{\mathbf{r}_i=\mathbf{r}} \quad (1)</math> | ||
The wave function of many | The wave function of the many-particle system <math>\Psi(\textbf{r}_{1},\textbf{r}_{2},\ldots,\textbf{r}_{N};t)</math> satisfies the following Schrödinger equation: | ||
<math>\begin{cases} | <math>\begin{cases} | ||
Line 29: | Line 13: | ||
-i\hbar\frac{\partial\Psi^{\star}}{\partial t}=\sum_{k}(-\frac{\hbar^{2}}{2m}\nabla_{k}^{2})\Psi^{\star}+\sum_{jk}v_{jk}\Psi^{\star}\end{cases}</math> | -i\hbar\frac{\partial\Psi^{\star}}{\partial t}=\sum_{k}(-\frac{\hbar^{2}}{2m}\nabla_{k}^{2})\Psi^{\star}+\sum_{jk}v_{jk}\Psi^{\star}\end{cases}</math> | ||
If we substitute <math>\frac{\partial\Psi}{\partial t}</math> and <math>\frac{\partial\Psi^{\star}}{\partial t}</math> into formula <math>(1)</math>, we obtain | |||
<math>\frac{\partial\rho_{i}}{\partial t}=\frac{i\hbar}{2m}\int\cdots\int d^{3}\mathbf{r}_{1}\,\cdots\,d^{3}\mathbf{r}_{i-1}\,d^{3}\mathbf{r}_{i+1}\,\cdots\,d^{3}\mathbf{r}_{N}\sum_{k}(\Psi^{\star}\nabla_{k}^{2}\Psi-\Psi\nabla_{k}^{2}\Psi^{\star})</math> | |||
<math>=\frac{i\hbar}{2m}\int\cdots\int d^{3}\mathbf{r}_{1}\,\cdots\,d^{3}\mathbf{r}_{i-1}\,d^{3}\mathbf{r}_{i+1}\,\cdots\,d^{3}\mathbf{r}_{N}\sum_{k}\nabla_{k}\cdot(\Psi^{\star}\nabla_{k}\Psi-\Psi\nabla_{k}\Psi^{\star}),</math> | |||
<math> | or, taking the sum over <math>i</math>, | ||
<math>= | <math>\frac{\partial\rho}{\partial t}=\frac{i\hbar}{2m}\sum_{i}\left.\int\cdots\int d^{3}\mathbf{r}_{1}\,\cdots\,d^{3}\mathbf{r}_{i-1}\,d^{3}\mathbf{r}_{i+1}\,\cdots\,d^{3}\mathbf{r}_{N}\sum_{k}\nabla_{k}\cdot(\Psi^{\star}\nabla_{k}\Psi-\Psi\nabla_{k}\Psi^{\star})\right |_{\mathbf{r}_i=\mathbf{r}}.</math> | ||
<math>\ | Let us now consider terms for which <math>i\neq k.</math> In these cases, we may use Gauss' Theorem, along with the requirement that <math>\lim_{r_k\rightarrow\infty}\Psi^{\ast}\nabla_{k}\Psi=0</math> for all <math>k,</math> to show that these terms must vanish. Therefore, | ||
<math> | <math>\frac{\partial\rho}{\partial t}=\frac{i\hbar}{2m}\sum_{i}\left.\int\cdots\int d^{3}\mathbf{r}_{1}\,\cdots\,d^{3}\mathbf{r}_{i-1}\,d^{3}\mathbf{r}_{i+1}\,\cdots\,d^{3}\mathbf{r}_{N}\nabla_{i}\cdot(\Psi^{\star}\nabla_{i}\Psi-\Psi\nabla_{i}\Psi^{\star})\right |_{\mathbf{r}_i=\mathbf{r}}</math> | ||
<math>=\sum_{i}\ | <math>=-\sum_{i}\nabla\cdot\mathbf{j}_{i}(\mathbf{r},t)=-\nabla\cdot\mathbf{j}(\mathbf{r},t),</math> | ||
or | |||
<math>\frac{\partial\rho}{\partial t} | <math>\frac{\partial\rho}{\partial t}+\nabla\cdot\mathbf{j}=0.</math> | ||
Back to [[Relation Between the Wave Function and Probability Density#Problems|Relation Between the Wave Function and Probability Density]] |
Latest revision as of 13:21, 18 January 2014
By definition:
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{\partial\rho}{\partial t}=\frac{\partial}{\partial t}\sum_{i}\rho_{i}(\mathbf{r},t)}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle =\left.\sum_{i}\int\cdots\int d^{3}\mathbf{r}_{1}\,\cdots\,d^{3}\mathbf{r}_{i-1}\,d^{3}\mathbf{r}_{i+1}\,\cdots\,d^{3}\mathbf{r}_{N}\left (\Psi^{\star}\frac{\partial\Psi}{\partial t}+\frac{\partial\Psi^{\star}}{\partial t}\Psi\right )\right |_{\mathbf{r}_i=\mathbf{r}}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle =\sum_{i}\left. \rho_{i}(\mathbf{r}_{i},t)\right |_{\mathbf{r}_i=\mathbf{r}} \quad (1)}
The wave function of the many-particle system Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Psi(\textbf{r}_{1},\textbf{r}_{2},\ldots,\textbf{r}_{N};t)} satisfies the following Schrödinger equation:
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{cases} i\hbar\frac{\partial\Psi}{\partial t}=\sum_{k}(-\frac{\hbar^{2}}{2m}\nabla^{2})\Psi+\sum_{jk}v_{jk}\Psi\\ -i\hbar\frac{\partial\Psi^{\star}}{\partial t}=\sum_{k}(-\frac{\hbar^{2}}{2m}\nabla_{k}^{2})\Psi^{\star}+\sum_{jk}v_{jk}\Psi^{\star}\end{cases}}
If we substitute Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{\partial\Psi}{\partial t}} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{\partial\Psi^{\star}}{\partial t}} into formula Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (1)} , we obtain
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{\partial\rho_{i}}{\partial t}=\frac{i\hbar}{2m}\int\cdots\int d^{3}\mathbf{r}_{1}\,\cdots\,d^{3}\mathbf{r}_{i-1}\,d^{3}\mathbf{r}_{i+1}\,\cdots\,d^{3}\mathbf{r}_{N}\sum_{k}(\Psi^{\star}\nabla_{k}^{2}\Psi-\Psi\nabla_{k}^{2}\Psi^{\star})}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle =\frac{i\hbar}{2m}\int\cdots\int d^{3}\mathbf{r}_{1}\,\cdots\,d^{3}\mathbf{r}_{i-1}\,d^{3}\mathbf{r}_{i+1}\,\cdots\,d^{3}\mathbf{r}_{N}\sum_{k}\nabla_{k}\cdot(\Psi^{\star}\nabla_{k}\Psi-\Psi\nabla_{k}\Psi^{\star}),}
or, taking the sum over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle i} ,
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{\partial\rho}{\partial t}=\frac{i\hbar}{2m}\sum_{i}\left.\int\cdots\int d^{3}\mathbf{r}_{1}\,\cdots\,d^{3}\mathbf{r}_{i-1}\,d^{3}\mathbf{r}_{i+1}\,\cdots\,d^{3}\mathbf{r}_{N}\sum_{k}\nabla_{k}\cdot(\Psi^{\star}\nabla_{k}\Psi-\Psi\nabla_{k}\Psi^{\star})\right |_{\mathbf{r}_i=\mathbf{r}}.}
Let us now consider terms for which Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle i\neq k.} In these cases, we may use Gauss' Theorem, along with the requirement that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{r_k\rightarrow\infty}\Psi^{\ast}\nabla_{k}\Psi=0} for all Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k,} to show that these terms must vanish. Therefore,
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{\partial\rho}{\partial t}=\frac{i\hbar}{2m}\sum_{i}\left.\int\cdots\int d^{3}\mathbf{r}_{1}\,\cdots\,d^{3}\mathbf{r}_{i-1}\,d^{3}\mathbf{r}_{i+1}\,\cdots\,d^{3}\mathbf{r}_{N}\nabla_{i}\cdot(\Psi^{\star}\nabla_{i}\Psi-\Psi\nabla_{i}\Psi^{\star})\right |_{\mathbf{r}_i=\mathbf{r}}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle =-\sum_{i}\nabla\cdot\mathbf{j}_{i}(\mathbf{r},t)=-\nabla\cdot\mathbf{j}(\mathbf{r},t),}
or
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{\partial\rho}{\partial t}+\nabla\cdot\mathbf{j}=0.}
Back to Relation Between the Wave Function and Probability Density