Harmonic Oscillator in an Electric Field: Difference between revisions

From PhyWiki
Jump to navigation Jump to search
(New page: :'''consider a particle with charge e moving under three dimensional isotropic harmonic potential '''l <math>V(r)=\frac{1}{2}m{\omega }^2{r}^2</math>'''in an electric field''' <math>E=E_...)
 
No edit summary
 
(10 intermediate revisions by 2 users not shown)
Line 1: Line 1:
:'''consider a particle with charge e moving under three dimensional isotropic harmonic potential '''l
The Hamiltonian of the system is


<math>V(r)=\frac{1}{2}m{\omega }^2{r}^2</math>'''in an electric field''' <math>E=E_{0}(x)</math> '''Find the eigen states and eigen values of the patricle'''
<math>H=\frac{p^2}{2m}+\tfrac{1}{2}m\omega^2r^2-eE_{0}x.</math>
 
We may seprate the Hamiltonian into three terms, <math>H=H_{x}+H_{y}+H_{z},\!</math> where
<math>H_{x}=\frac{p_{x}^{2}}{2m}+\tfrac{1}{2}m\omega^2x^2-eE_{0}x,</math>
 
<math>H_{y}=\frac{p_{y}^{2}}{2m}+\tfrac{1}{2}m\omega^2y^2,</math>
 
and
 
<math>H_{z}=\frac{p_{z}^{2}}{2m}+\tfrac{1}{2}m\omega^2z^2.</math>
 
Note that each of these terms depends on only one coordinate, and that, in fact, <math>H_y\!</math> and <math>H_z\!</math> are each the Hamiltonian of a one-dimensional harmonic oscillator.  In fact, if we "complete the square" in <math>H_x,\!</math> we will find that it is also a one-dimensional harmonic oscillator, but with a shifted center. Let us, in fact, do this:
 
<math>H_x=\frac{p_{x}^{2}}{2m}+\tfrac{1}{2}m\omega^2\left (x^2-\frac{2eE_{0}}{m\omega^2}x\right )=\frac{p_{x}^{2}}{2m}+\tfrac{1}{2}m\omega^2\left (x-\frac{eE_{0}}{m\omega^2}\right )^2-\frac{e^2E_0^2}{2m\omega^2}</math>
 
We may now easily write down the solution.  If we take <math>\psi(x,y,z)=X(x)Y(y)Z(z),\!</math> then
 
<math>X(x)=\frac{1}{2^{n_1}n_1!}\left (\frac{m\omega}{\pi\hbar}\right )^{1/4}\exp\left [-\frac{m\omega}{2\hbar}\left (x-\frac{eE_0}{m\omega^2}\right )^2\right ]H_{n_1}\left [\sqrt{\frac{m\omega}{\hbar}}\left (x-\frac{eE_0}{m\omega^2}\right )\right ],</math>
 
<math>Y(y)=\frac{1}{2^{n_2}n_2!}\left (\frac{m\omega}{\pi\hbar}\right )^{1/4}e^{-m\omega y^2/2\hbar}H_{n_2}\left (\sqrt{\frac{m\omega}{\hbar}}y\right ),</math>
 
and
 
<math>Z(z)=\frac{1}{2^{n_3}n_3!}\left (\frac{m\omega}{\pi\hbar}\right )^{1/4}e^{-m\omega z^2/2\hbar}H_{n_3}\left (\sqrt{\frac{m\omega}{\hbar}}z\right ).</math>
 
The energy may simply be written as <math>E=E_x+E_y+E_z,\!</math> where <math>E_x,\!</math> <math>E_y,\!</math> and <math>E_z\!</math> are the contributions to the energy from each of the harmonic oscillators.  These are
 
<math>E_x=\left (n_1+\tfrac{1}{2}\right )\hbar\omega-\frac{e^2E_0^2}{2m\omega^2},</math>
 
<math>E_y=\left (n_2+\tfrac{1}{2}\right )\hbar\omega,</math>
 
and
 
<math>E_z=\left (n_3+\tfrac{1}{2}\right)\hbar\omega.</math>
 
The total energy is thus
 
<math>E=\left (n_{1}+n_{2}+n_{3}+\tfrac{3}{2}\right )\hbar\omega-\frac{e^2E_{0}^{2}}{2m\omega^{2}}.</math>
 
Back to [[Analytical Method for Solving the Simple Harmonic Oscillator#Problem|Analytical Method for Solving the Simple Harmonic Oscillator]]

Latest revision as of 13:34, 18 January 2014

The Hamiltonian of the system is

We may seprate the Hamiltonian into three terms, where

and

Note that each of these terms depends on only one coordinate, and that, in fact, and are each the Hamiltonian of a one-dimensional harmonic oscillator. In fact, if we "complete the square" in we will find that it is also a one-dimensional harmonic oscillator, but with a shifted center. Let us, in fact, do this:

We may now easily write down the solution. If we take then

and

The energy may simply be written as where and are the contributions to the energy from each of the harmonic oscillators. These are

and

The total energy is thus

Back to Analytical Method for Solving the Simple Harmonic Oscillator