Harmonic Oscillator in an Electric Field: Difference between revisions

From PhyWiki
Jump to navigation Jump to search
No edit summary
No edit summary
 
(5 intermediate revisions by 2 users not shown)
Line 1: Line 1:
:'''consider a particle with charge e moving under three dimensional isotropic harmonic potential '''l
The Hamiltonian of the system is


<math>V(r)=\frac{1}{2}m{\omega }^2{r}^2</math>'''in an electric field'''  <math>E=E_{0}(x)</math> '''Find the eigen states and eigen values of the patricle'''
<math>H=\frac{p^2}{2m}+\tfrac{1}{2}m\omega^2r^2-eE_{0}x.</math>


the Hamiltonian of the system is:
We may seprate the Hamiltonian into three terms, <math>H=H_{x}+H_{y}+H_{z},\!</math> where
<math>H_{x}=\frac{p_{x}^{2}}{2m}+\tfrac{1}{2}m\omega^2x^2-eE_{0}x,</math>


<math>H=\frac{P^2}{2m}+\frac{1}{2}m\omega ^2r^2-eE_{0}x</math>
<math>H_{y}=\frac{p_{y}^{2}}{2m}+\tfrac{1}{2}m\omega^2y^2,</math>


we seprate the Hamiltonian (<math>H=H_{x}+H_{y}+H_{z} f</math>) where
and
<math>H_{x}=\frac{p_{x}^{2}}{2m}+\frac{1}{2}m\omega ^2x^2-eE_{0}x</math>


<math>H_{y}=\frac{p_{y}^{2}}{2m}+\frac{1}{2}m\omega ^2y^2 </math>
<math>H_{z}=\frac{p_{z}^{2}}{2m}+\tfrac{1}{2}m\omega^2z^2.</math>  


<math>H_{z}=\frac{p_{z}^{2}}{2m}+\frac{1}{2}m\omega ^2z^2</math>  
Note that each of these terms depends on only one coordinate, and that, in fact, <math>H_y\!</math> and <math>H_z\!</math> are each the Hamiltonian of a one-dimensional harmonic oscillator.  In fact, if we "complete the square" in <math>H_x,\!</math> we will find that it is also a one-dimensional harmonic oscillator, but with a shifted center.  Let us, in fact, do this:


Notice that <math>H_{x} ,H_{z}</math>are identical to the Hamiltonian of the one dimensional harmonic oscillator, so we can write the wave function
<math>H_x=\frac{p_{x}^{2}}{2m}+\tfrac{1}{2}m\omega^2\left (x^2-\frac{2eE_{0}}{m\omega^2}x\right )=\frac{p_{x}^{2}}{2m}+\tfrac{1}{2}m\omega^2\left (x-\frac{eE_{0}}{m\omega^2}\right )^2-\frac{e^2E_0^2}{2m\omega^2}</math>


<math>\psi (x,y,z)=\psi _{1}(x)\psi _{2}(y)\psi _{3}(z)</math>, where
We may now easily write down the solution.  If we take <math>\psi(x,y,z)=X(x)Y(y)Z(z),\!</math> then


<math>\psi _{2}(y)</math>, and
<math>X(x)=\frac{1}{2^{n_1}n_1!}\left (\frac{m\omega}{\pi\hbar}\right )^{1/4}\exp\left [-\frac{m\omega}{2\hbar}\left (x-\frac{eE_0}{m\omega^2}\right )^2\right ]H_{n_1}\left [\sqrt{\frac{m\omega}{\hbar}}\left (x-\frac{eE_0}{m\omega^2}\right )\right ],</math>
<math>\psi _{3}(z)</math> are the wave functions of the one dimensional harmonic oscillator:
<math>\psi (x,y,z)=\psi _{1}(x)\psi _{2}(y)\psi _{3}(z)</math>


<math>\psi _{2}(y)=\frac{1}{\sqrt{\pi \lambda 2 ^{n_{2}}n_{2}!}}H_{n_{2}}e^{\frac{-y^{2}}{2\lambda ^{2}}}</math>
<math>Y(y)=\frac{1}{2^{n_2}n_2!}\left (\frac{m\omega}{\pi\hbar}\right )^{1/4}e^{-m\omega y^2/2\hbar}H_{n_2}\left (\sqrt{\frac{m\omega}{\hbar}}y\right ),</math>


<math>\psi _{3}(z)=\frac{1}{\sqrt{\pi \lambda 2 ^{n_{3}}n_{3}!}}H_{n_{3}}e^{\frac{-z^{2}}{2\lambda ^{2}}}</math>
and
<math>\lambda =\sqrt{\frac{\hbar}{m\omega }},</math> The equation of the<math>\psi _{1}(x)</math> is


<math>-\frac{\hbar^{2}}{2m}\frac{\partial^2\psi _{1}(x)}{\partial x^2}+\frac{m\omega ^{2}}{2}x^{2}\psi _{1}(x)-eE_{0}(x)\psi _{1}(x)=E_{1}\psi _{1}(x)</math>
<math>Z(z)=\frac{1}{2^{n_3}n_3!}\left (\frac{m\omega}{\pi\hbar}\right )^{1/4}e^{-m\omega z^2/2\hbar}H_{n_3}\left (\sqrt{\frac{m\omega}{\hbar}}z\right ).</math>


changing variables to <math>\xi =\frac{x}{\lambda }-\frac{eE_{0}}{\sqrt{\hbar m \omega }}</math>
The energy may simply be written as <math>E=E_x+E_y+E_z,\!</math> where <math>E_x,\!</math> <math>E_y,\!</math> and <math>E_z\!</math> are the contributions to the energy from each of the harmonic oscillators.  These are


<math>\frac{\partial^2 \psi _{1}}{\partial \xi ^2}+(\frac{2E_{1}}{\hbar \omega })\frac{(eE_{0})^{2})}{\sqrt{\hbar m\omega ^{3}}})\psi _{1}-\xi ^{2}\psi _{1}=0</math>
<math>E_x=\left (n_1+\tfrac{1}{2}\right )\hbar\omega-\frac{e^2E_0^2}{2m\omega^2},</math>


we obtain the diffrential equation for a one dimensional harmonic oscillator with the solution
<math>E_y=\left (n_2+\tfrac{1}{2}\right )\hbar\omega,</math>


<math>\psi _{1}(\xi )=\frac{1}{\sqrt{\pi \lambda 2 ^{n_{1}}n_{1}!}}H_{n_{1}}e^{\frac{-\xi ^{2}}{2\lambda ^{2}}}</math>
and


<math>\psi _{1}(\xi )=\frac{1}{\sqrt{\pi \lambda 2^{n_{1}}n_{1}!}}H_{n_{1}}(x) exp[-\frac{1}{2}(\frac{x}{\lambda }-\frac{eE_{0}}{\sqrt{\hbar m\omega ^{3}}})^{2}]
<math>E_z=\left (n_3+\tfrac{1}{2}\right)\hbar\omega.</math>
(E_{1})_{n_{1}}=(n_{1}+\frac{1}{2})\hbar \omega -\frac{(eE_{0})^{2}}{2m\omega ^{2}}</math>


The quantization condition in this case is
The total energy is thus
<math>\frac{(2E_{1})}{\hbar\omega }+\frac{(eE_{0})^2}{\hbar m\omega ^{3}}=2n_{1}+1</math>
so the energy eigenvalues are
<math>(E_{1})_{n_{1}}=(n_{1}+\frac{1}{2})\hbar \omega -\frac{(eE_{0})^{2}}{2m\omega ^{2}}</math>


In conclusion,the wave functions are <math>\psi (x,y,z)=\psi _{1}(x)\psi _{2}(y)\psi _{3}(z)</math>
<math>E=\left (n_{1}+n_{2}+n_{3}+\tfrac{3}{2}\right )\hbar\omega-\frac{e^2E_{0}^{2}}{2m\omega^{2}}.</math>


<math>E_{n_{1},n_{2},n_{3}}=E_{n_{1}}+E_{n_{2}}+E_{n_{3}}=(n_{1}+n_{2}+n_{3}+\frac{3}{2})\hbar \omega -\frac{(eE_{0})^{2}}{2m\omega ^{2}}</math>
Back to [[Analytical Method for Solving the Simple Harmonic Oscillator#Problem|Analytical Method for Solving the Simple Harmonic Oscillator]]

Latest revision as of 13:34, 18 January 2014

The Hamiltonian of the system is

We may seprate the Hamiltonian into three terms, where

and

Note that each of these terms depends on only one coordinate, and that, in fact, and are each the Hamiltonian of a one-dimensional harmonic oscillator. In fact, if we "complete the square" in we will find that it is also a one-dimensional harmonic oscillator, but with a shifted center. Let us, in fact, do this:

We may now easily write down the solution. If we take then

and

The energy may simply be written as where and are the contributions to the energy from each of the harmonic oscillators. These are

and

The total energy is thus

Back to Analytical Method for Solving the Simple Harmonic Oscillator