Sample problem 2: Difference between revisions

From PhyWiki
Jump to navigation Jump to search
(New page: ''Suppose the Hamiltonian of a rigid rotator in the magnetic field perpendicular to the axis is of the form(Merzbacher 1970, problem 17-1)'' == '''<math>H=AL^2+BL_{z}+CL_{y}</math>''' ==)
 
No edit summary
 
(17 intermediate revisions by 2 users not shown)
Line 1: Line 1:
''Suppose the Hamiltonian of a rigid rotator in the magnetic field perpendicular to the axis is of the form(Merzbacher 1970, problem 17-1)''
'''''Problem- suppose the hamiltonian of a rigid rotator in a magnetic field perpendicular to the axis is of the form(Merzbacher 1970, Problem 17-1) '''''
== '''<math>H=AL^2+BL_{z}+CL_{y}</math>''' ==
 
'''<math>H=AL^2+BL_{z}+CL_{y}</math>'''
 
'''''if terms quadratic in the field are neglected. Assuming B, use Pertubation to the lowest nonvanishing order to get approximate energy eigenvalues text''''
 
'''Solution-''' we rotate the system in the direction which is in the Z' axis, thus, <math>H=AL^2+(B^2+C^2)L_{z}^{'}</math> where the angel between Z and Z' can be written
we can have The eigen state<math>\langle l,m^{'}\rangle</math>
with eigen value <math>E=Al(l+1)\hbar^{2}+(B^2+C^2)^{1/2}m'\hbar</math>and,
 
<math> |l,m'\rangle</math>
 
 
If<math>B\gg C  </math>, 
<math>H=AL^2+(B^2+C^2)L_{z}^{'}</math>should be considered as none pertubative Hamiltonian,  and  <math>CL_{y}</math> behaves as pertubative term. So the none pertubative eigen value and eigen states areand <math>E_{l,m}^{0}=A\hbar^2l(l+1)+Bm\hbar</math>
and first order corrections to the eigenstates of a given Hamiltonian is zero because of <math>L_{y}</math> so the second order correction will be written in the following form
<math>E_{n}^{(2)}=A\hbar^2l(l+1)+Bm\hbar+C^2\sum_{l',m'\neq l,m}\frac{\langle l^{'},m^{'}\left | L_{y} \right |l,m\rangle^2}{E_{l,m}^{0}-E_{l',m'}^{0}}</math>
 
We know that
 
<math>L_{y}=\frac{1}{2i}(L_{+}-L_{-})</math>
So,
 
<math>E_{n}^{(2)}=A\hbar^2l(l+1)+Bm\hbar+\frac{C^2m \hbar}{2B} </math>
 
By exact solution for B>>C we will get:
<math>E=A\hbar^2l(l+1)+Bm'\hbar+\frac{C^2m' \hbar}{2B}+...</math>
 
 
For <math>m'\rightarrow m</math> the exact solution gives the same energy,

Latest revision as of 21:52, 30 April 2010

Problem- suppose the hamiltonian of a rigid rotator in a magnetic field perpendicular to the axis is of the form(Merzbacher 1970, Problem 17-1)

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle H=AL^2+BL_{z}+CL_{y}}

if terms quadratic in the field are neglected. Assuming B, use Pertubation to the lowest nonvanishing order to get approximate energy eigenvalues text'

Solution- we rotate the system in the direction which is in the Z' axis, thus, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle H=AL^2+(B^2+C^2)L_{z}^{'}} where the angel between Z and Z' can be written we can have The eigen stateFailed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \langle l,m^{'}\rangle} with eigen value Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E=Al(l+1)\hbar^{2}+(B^2+C^2)^{1/2}m'\hbar} and,

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |l,m'\rangle}


IfFailed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B\gg C } , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle H=AL^2+(B^2+C^2)L_{z}^{'}} should be considered as none pertubative Hamiltonian, and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle CL_{y}} behaves as pertubative term. So the none pertubative eigen value and eigen states areand Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E_{l,m}^{0}=A\hbar^2l(l+1)+Bm\hbar} and first order corrections to the eigenstates of a given Hamiltonian is zero because of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle L_{y}} so the second order correction will be written in the following form Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E_{n}^{(2)}=A\hbar^2l(l+1)+Bm\hbar+C^2\sum_{l',m'\neq l,m}\frac{\langle l^{'},m^{'}\left | L_{y} \right |l,m\rangle^2}{E_{l,m}^{0}-E_{l',m'}^{0}}}

We know that

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle L_{y}=\frac{1}{2i}(L_{+}-L_{-})} So,

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E_{n}^{(2)}=A\hbar^2l(l+1)+Bm\hbar+\frac{C^2m \hbar}{2B} }

By exact solution for B>>C we will get: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E=A\hbar^2l(l+1)+Bm'\hbar+\frac{C^2m' \hbar}{2B}+...}


For Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle m'\rightarrow m} the exact solution gives the same energy,