Phy5646/Non-degenerate Perturbation Theory - Problem 3: Difference between revisions
No edit summary |
No edit summary |
||
(19 intermediate revisions by one other user not shown) | |||
Line 2: | Line 2: | ||
This example taken from "Quantum Physics" 3rd ed., Stephen Gasiorowicz, p. 177. | This example taken from "Quantum Physics" 3rd ed., Stephen Gasiorowicz, p. 177. | ||
----- | |||
'''Problem:''' | '''Problem:''' | ||
A charged particle in a simple harmonic oscillator, for which <math>{H}_0 = \frac{p^{2}}{2m} + \frac{mw^{2}}{2}</math>, | A charged particle in a simple harmonic oscillator, for which <math>{H}_0 = \frac{p^{2}}{2m} + \frac{mw^{2}}{2}</math>, | ||
subject to a constant electric field so that <math>{H}^' = q\mathcal{E} x</math>. Calculate the energy shift | subject to a constant electric field so that <math>{H}^' = q\mathcal{E} x</math>. Calculate the energy shift | ||
for the <math>n^{th}</math> level to first and second order in <math>(q\mathcal{E})</math>. | for the <math>n^{th}\!</math> level to first and second order in <math>(q\mathcal{E})</math>. | ||
(Hint: Use the operators <math>a</math> and <math>a^{\dagger}</math> for the evaluation of the matrix elements). | (Hint: Use the operators <math>a</math> and <math>a^{\dagger}</math> for the evaluation of the matrix elements). | ||
----- | |||
'''Solution:''' | '''Solution:''' | ||
(a) To first order we need to calculate <math>{H}^' = q\mathcal{E} \langle n|x|n\rangle</math>. It is easy to show that | |||
use the relation | (a) To first order we need to calculate <math>{H}^' = q\mathcal{E}\langle n|x|n\rangle</math>. It is easy to show that <math>\langle n|x|n\rangle = 0</math>. One way is to use the relation | ||
:<math> | |||
and since A\ | x=\sqrt{\frac{\hbar}{2m\omega}}\left(a+a^{\dagger}\right) | ||
</math> | |||
and since <math>A|n\rangle = \sqrt{n}|n-1\rangle</math> and <math>A^{\dagger}|n\rangle = \sqrt{n+1}|n+1\rangle</math> we see that <math>\langle n|x|n\rangle = 0</math>. | |||
(b) The second-order term involves | (b) The second-order term involves | ||
:<math> | |||
The only contributions come from k = n | q^{2}\mathcal{E}^{2}\sum_{k\neq n}\frac{|\langle k|x|n\rangle|^{2}}{\hbar \omega (n-k)}= \frac{q^{2}\mathcal{E}^{2}}{\hbar\omega}\frac{\hbar}{2m\omega}\sum_{k\neq n} \frac{\left|\left\langle k\left|a+a^{\dagger}\right|n\right\rangle\right|^{2}}{n-k} | ||
\{k\ | </math> | ||
The only contributions come from <math>k=n-1 \!</math> and <math>k=n+1 \!</math>, so that | |||
:<math> | |||
\sum_{k\neq n} \frac{\left|\left\langle k\left|a+a^{\dagger}\right|n\right\rangle\right|^{2}}{n-k}=\left|\sqrt{n}\right|^{2}-\left|\sqrt{n+1}\right|^{2}=-1 | |||
</math> | |||
and thus | and thus | ||
:<math> | |||
E_{n}^{(2)}=-\frac{q^{2}\mathcal{E}^{2}}{2m\omega} | |||
The result is independent of n. We can check for its correctness by noting that the total potential | </math> | ||
The result is independent of <math>n\!</math>. We can check for its correctness by noting that the total potential | |||
energy is | energy is | ||
:<math> | |||
2 | \frac{1}{2}m\omega^{2}x^{2}+q\mathcal{E}x=\frac{1}{2}m\omega^{2}\left(x^{2}+\frac{2q\mathcal{E}}{m\omega^{2}}x\right)=\frac{1}{2}m\omega^{2}\left(x+\frac{q\mathcal{E}}{m\omega^{2}}\right)^{2}-\frac{q^{2}\mathcal{E}^{2}}{2m\omega^{2}} | ||
Thus the perturbation shifts the center of the potential by | </math> | ||
Thus the perturbation shifts the center of the potential by <math> -\frac{q\mathcal{E}}{m\omega^{2}}</math> and lowers the energy by | |||
<math>\frac{q^{2}\mathcal{E}^{2}}{2m\omega^{2}}</math>, which agrees with our second-order result. |
Latest revision as of 22:13, 24 April 2010
(Submitted by Team 1)
This example taken from "Quantum Physics" 3rd ed., Stephen Gasiorowicz, p. 177.
Problem:
A charged particle in a simple harmonic oscillator, for which Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {H}_0 = \frac{p^{2}}{2m} + \frac{mw^{2}}{2}} , subject to a constant electric field so that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {H}^' = q\mathcal{E} x} . Calculate the energy shift for the Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n^{th}\!} level to first and second order in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (q\mathcal{E})} . (Hint: Use the operators Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a^{\dagger}} for the evaluation of the matrix elements).
Solution:
(a) To first order we need to calculate Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {H}^' = q\mathcal{E}\langle n|x|n\rangle} . It is easy to show that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \langle n|x|n\rangle = 0} . One way is to use the relation
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x=\sqrt{\frac{\hbar}{2m\omega}}\left(a+a^{\dagger}\right) }
and since Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A|n\rangle = \sqrt{n}|n-1\rangle} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A^{\dagger}|n\rangle = \sqrt{n+1}|n+1\rangle} we see that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \langle n|x|n\rangle = 0} .
(b) The second-order term involves
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{2}\mathcal{E}^{2}\sum_{k\neq n}\frac{|\langle k|x|n\rangle|^{2}}{\hbar \omega (n-k)}= \frac{q^{2}\mathcal{E}^{2}}{\hbar\omega}\frac{\hbar}{2m\omega}\sum_{k\neq n} \frac{\left|\left\langle k\left|a+a^{\dagger}\right|n\right\rangle\right|^{2}}{n-k} }
The only contributions come from Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k=n-1 \!} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k=n+1 \!} , so that
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{k\neq n} \frac{\left|\left\langle k\left|a+a^{\dagger}\right|n\right\rangle\right|^{2}}{n-k}=\left|\sqrt{n}\right|^{2}-\left|\sqrt{n+1}\right|^{2}=-1 }
and thus
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E_{n}^{(2)}=-\frac{q^{2}\mathcal{E}^{2}}{2m\omega} }
The result is independent of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n\!} . We can check for its correctness by noting that the total potential energy is
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{2}m\omega^{2}x^{2}+q\mathcal{E}x=\frac{1}{2}m\omega^{2}\left(x^{2}+\frac{2q\mathcal{E}}{m\omega^{2}}x\right)=\frac{1}{2}m\omega^{2}\left(x+\frac{q\mathcal{E}}{m\omega^{2}}\right)^{2}-\frac{q^{2}\mathcal{E}^{2}}{2m\omega^{2}} }
Thus the perturbation shifts the center of the potential by Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\frac{q\mathcal{E}}{m\omega^{2}}} and lowers the energy by Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{q^{2}\mathcal{E}^{2}}{2m\omega^{2}}} , which agrees with our second-order result.