Electron on Helium Surface: Difference between revisions

From PhyWiki
Jump to navigation Jump to search
No edit summary
No edit summary
 
(11 intermediate revisions by 2 users not shown)
Line 30: Line 30:
(a) Solve the Schrödinger equation.
(a) Solve the Schrödinger equation.


<math> H = -\frac{h^2}{2m}\nabla^2 + V(z) </math>
<math> H = -\frac{\hbar^2}{2m}\nabla^2 + V(z) </math>


The Schrodinger equation for when <math>z>0</math> is:
The Schrödinger equation for when <math>z>0</math> is:


<math>  
<math>  
   \left[
   \left[
     \frac{h^2}{2m} \left(
     \frac{\hbar^2}{2m} \left(
     \frac{\partial ^2}{\partial x^2} +     
     \frac{\partial ^2}{\partial x^2} +     
     \frac{\partial ^2}{\partial y^2} +   
     \frac{\partial ^2}{\partial y^2} +   
Line 55: Line 55:
This corresponds to motion parallel to the helium surface.
This corresponds to motion parallel to the helium surface.


For z-component the Schordinger equation becomes:
For z-component the Schroedinger equation becomes:


<math>
<math>
   \left[  
   \left[  
     \frac{h^2}{2m}\frac{\partial ^2}{\partial z^2} - \frac{Q^2e^2}{z}  
     \frac{\hbar^2}{2m}\frac{\partial ^2}{\partial z^2} -  
    \frac{Q^2e^2}{z}  
   \right] Z(z) =
   \right] Z(z) =
</math>
This has the same form as the hydrogin atom with l=0 (s-wave). Since similar equations have similar solutions, the solution to the z-component is:
<math> Z(z) = zR_{n0}(z) </math>
where
<math>
  R_{10} = \left( \frac{1}{a_0} \right) ^{3/2} z e^{ -\frac{z}{a_0} }
</math>
<math>
  R_{20} = \left( \frac{1}{2a_0} \right) ^{3/2}
    \left( 2-\frac{z}{a_0} \right) e^{ -\frac{z}{2a_0} }
</math>
The total wave function and energies are:
<math> \psi = Ae^{i(k_x x + k_y y)}zR_{n0}(z) </math>
<math>
  E_{k_xK_yK_z} = \frac{\hbar^2}{2m}
  \left( k_x^2 + k_y^2 \right) -\frac{Q^4e^4m}{2\hbar^2n^2}
</math>
where n = 1,2,... is the quantum number for the z-direction
and the bohr radius has become
<math> a_0 = \frac{\hbar^2}{mQ^2e^2} </math>
(b) Turn on electric field at t=0.
The electric field introduces a perturbation to the hamiltonian:
<math> V_t = eE_0ze^{t/\tau} </math>
From expression 2.1.10 in [http://wiki.physics.fsu.edu/wiki/index.php/Phy5646#Formalism Time Dependent Perturbation] Section of the PHY5646 page:
<math>\begin{align}
  P_{1 \rightarrow 2}(t \rightarrow \infty)
  &= |\langle n|\psi(t)\rangle|^2
  \\
  &= \left|\frac{1}{i\hbar}\int_{0}^{\infty}dt' 
    e^{\frac{i}{\hbar}(E_2 - E_1)t'}
    \langle \psi_{n=2}|V_{t'}| \psi_{n=1}\rangle\right|^2
  \\
  &= \frac{e^2E_0^2}{\hbar^2}
    \frac{1}{\omega_{21}^2 + \frac{1}{\tau}}
    \left| \langle \psi_{n=2}(z) | z | \psi_{n=1}(z) \rangle \right|^2
\end{align}</math>
<math>\begin{align}
  \langle \psi_{n=2}(z) | z | \psi_{n=1}(z) \rangle
 
  &= \langle zR{20} | z | zR_{10} \rangle
  \\
  &= \int_{0}^{\infty} dz z^3 e^{ \frac{3}{2} \frac{z}{a_0}} \left( 2 - \frac{z}{a_0} \right)
    \left[ \frac{1}{ \left( \int_{0}^{\infty} dz z^2 e^{\frac{-2z}{a_0}} \right)^{1/2}
                      \left( \int_{0}^{\infty} dz z^2 \left(2 - \frac{z}{a_0} \right)^2 e^{\frac{-z}{a_0}} \right)^{1/2}
    } \right]
\end{align}</math>
where the quantity inside the brackets is the normalization for <math> \psi_1 </math> and <math> \psi_2 </math>, respectively.
let <math> x = \frac{z}{a_0} </math>
<math>\begin{align}
\langle \psi_{n=2}(z) | z | \psi_{n=1}(z) \rangle
  &\rightarrow
  a_0 \int_{0}^{\infty} dx x^3 e^{ \frac{3}{2} x } \left( 2 - x \right)
    \left[ \frac{1}{ \left( \int_{0}^{\infty} dx x^2e^{-2x} \right)^{1/2}
                      \left( \int_{0}^{\infty} dx x^2 \left( 2 - x \right)^2 e^{ -x } \right)^{1/2}
    } \right]
  \\
  &= a_0 \frac{3}{2} \sqrt{2}{81}
\end{align}</math>
So the probablity of a transition from ground state to the first excited state is:
<math>
P_{1 \rightarrow 2} = \frac{e^2E_0^2}{\hbar^2} \frac{1}{ \omega_{21}^2 + \frac{1}{\tau^2} } \frac{2^{11}}{3^{8}}
</math>

Latest revision as of 19:51, 26 April 2010

An electron close to the surface of liquid helium experiences an attractive force due to the electrostatic polarization of the helium and a repulsive force due to the exclusion principle(hard core). To a reasonable approximation for the potential when helium fills the space where :

Note: the potential is infinite when because the cannot penetrate the helium surface.


(a) Solve the Schrödinger equation. Find the Eingenenergies and Eigenvalues.

(b) An electric field is turned on at t=0 which produces the perturbation:

If the electron is initially in its ground state, find the probability makes a transition to its first excited state for times .

Solution...

(a) Solve the Schrödinger equation.

The Schrödinger equation for when is:

Using separation of variables:

For X and Y we get place waves.

This corresponds to motion parallel to the helium surface.

For z-component the Schroedinger equation becomes:

This has the same form as the hydrogin atom with l=0 (s-wave). Since similar equations have similar solutions, the solution to the z-component is:

where


The total wave function and energies are:

where n = 1,2,... is the quantum number for the z-direction and the bohr radius has become


(b) Turn on electric field at t=0.

The electric field introduces a perturbation to the hamiltonian:

From expression 2.1.10 in Time Dependent Perturbation Section of the PHY5646 page:


where the quantity inside the brackets is the normalization for and , respectively.

let

So the probablity of a transition from ground state to the first excited state is: