Sample problem 2: Difference between revisions

From PhyWiki
Jump to navigation Jump to search
No edit summary
 
(12 intermediate revisions by 2 users not shown)
Line 1: Line 1:
''Suppose the Hamiltonian of a rigid rotator in the magnetic field perpendicular to the axis is of the form(Merzbacher 1970, problem 17-1)''
'''''Problem- suppose the hamiltonian of a rigid rotator in a magnetic field perpendicular to the axis is of the form(Merzbacher 1970, Problem 17-1) '''''
== '''<math>H=AL^2+BL_{z}+CL_{y}</math>''' ==
"if terms quadratic in the field are neglected. Assuming B, use Pertubation to the lowest nonvanishing order to get approximate energy eigenvalues ''


we rotate the system in the direction which is in the Z' axis, thus, <math>H=AL^2+(B^2+c^2)L_{z'}</math> where the angel between Z and Z' can be written
'''<math>H=AL^2+BL_{z}+CL_{y}</math>'''
we can have The eigen state       with eigen value<math>E=Al(l+1)h^{2}+(B^2+C^2)^{1/2}m'h</math>
 
'''''if terms quadratic in the field are neglected. Assuming B, use Pertubation to the lowest nonvanishing order to get approximate energy eigenvalues text''''
 
'''Solution-''' we rotate the system in the direction which is in the Z' axis, thus, <math>H=AL^2+(B^2+C^2)L_{z}^{'}</math> where the angel between Z and Z' can be written
we can have The eigen state<math>\langle l,m^{'}\rangle</math>
with eigen value <math>E=Al(l+1)\hbar^{2}+(B^2+C^2)^{1/2}m'\hbar</math>and,
 
<math> |l,m'\rangle</math>
 
 
If<math>B\gg C  </math>, 
<math>H=AL^2+(B^2+C^2)L_{z}^{'}</math>should be considered as none pertubative Hamiltonian,  and  <math>CL_{y}</math> behaves as pertubative term. So the none pertubative eigen value and eigen states areand <math>E_{l,m}^{0}=A\hbar^2l(l+1)+Bm\hbar</math>
and first order corrections to the eigenstates of a given Hamiltonian is zero because of <math>L_{y}</math> so the second order correction will be written in the following form
<math>E_{n}^{(2)}=A\hbar^2l(l+1)+Bm\hbar+C^2\sum_{l',m'\neq l,m}\frac{\langle l^{'},m^{'}\left | L_{y} \right |l,m\rangle^2}{E_{l,m}^{0}-E_{l',m'}^{0}}</math>
 
We know that
 
<math>L_{y}=\frac{1}{2i}(L_{+}-L_{-})</math>
So,
 
<math>E_{n}^{(2)}=A\hbar^2l(l+1)+Bm\hbar+\frac{C^2m \hbar}{2B} </math>
 
By exact solution for B>>C we will get:
<math>E=A\hbar^2l(l+1)+Bm'\hbar+\frac{C^2m' \hbar}{2B}+...</math>
 
 
For <math>m'\rightarrow m</math> the exact solution gives the same energy,

Latest revision as of 21:52, 30 April 2010

Problem- suppose the hamiltonian of a rigid rotator in a magnetic field perpendicular to the axis is of the form(Merzbacher 1970, Problem 17-1)

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle H=AL^2+BL_{z}+CL_{y}}

if terms quadratic in the field are neglected. Assuming B, use Pertubation to the lowest nonvanishing order to get approximate energy eigenvalues text'

Solution- we rotate the system in the direction which is in the Z' axis, thus, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle H=AL^2+(B^2+C^2)L_{z}^{'}} where the angel between Z and Z' can be written we can have The eigen stateFailed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \langle l,m^{'}\rangle} with eigen value Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E=Al(l+1)\hbar^{2}+(B^2+C^2)^{1/2}m'\hbar} and,

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |l,m'\rangle}


IfFailed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B\gg C } , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle H=AL^2+(B^2+C^2)L_{z}^{'}} should be considered as none pertubative Hamiltonian, and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle CL_{y}} behaves as pertubative term. So the none pertubative eigen value and eigen states areand Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E_{l,m}^{0}=A\hbar^2l(l+1)+Bm\hbar} and first order corrections to the eigenstates of a given Hamiltonian is zero because of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle L_{y}} so the second order correction will be written in the following form Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E_{n}^{(2)}=A\hbar^2l(l+1)+Bm\hbar+C^2\sum_{l',m'\neq l,m}\frac{\langle l^{'},m^{'}\left | L_{y} \right |l,m\rangle^2}{E_{l,m}^{0}-E_{l',m'}^{0}}}

We know that

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle L_{y}=\frac{1}{2i}(L_{+}-L_{-})} So,

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E_{n}^{(2)}=A\hbar^2l(l+1)+Bm\hbar+\frac{C^2m \hbar}{2B} }

By exact solution for B>>C we will get: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E=A\hbar^2l(l+1)+Bm'\hbar+\frac{C^2m' \hbar}{2B}+...}


For Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle m'\rightarrow m} the exact solution gives the same energy,