Phy5646/soham1: Difference between revisions
SohamGhosh (talk | contribs) (New page: (Introduction to Qusntum Mechanics, Griffiths, 2e)Problem 7.14 If the photon has a nonzero mass <math>(m_{\gamma} \neq 0)</math>, the Coulomb potential would be rep[laced by the Yukawa po...) |
No edit summary |
||
(5 intermediate revisions by one other user not shown) | |||
Line 1: | Line 1: | ||
(Introduction to | (Introduction to Quantum Mechanics, Griffiths, 2e)Problem 7.14 | ||
If the photon has a nonzero mass <math>(m_{\gamma} \neq 0)</math>, the Coulomb potential would be rep[laced by the Yukawa potential, | If the photon has a nonzero mass <math>(m_{\gamma} \neq 0)</math>, the Coulomb potential would be rep[laced by the Yukawa potential, | ||
<math>V(r)= \frac{e^{2}}{4\pi\epsilon_{0}} \frac{e^{-\mu r}}{r}</math> where <math>\mu = m_{\gamma}c\hbar</math>. | <math>V(r)= \frac{e^{2}}{4\pi\epsilon_{0}} \frac{e^{-\mu r}}{r}</math> where <math>\mu = m_{\gamma}c\hbar</math>. | ||
With a trial wave function of your own devising, estimate the binding energy of a "hydrogen" atom with this potential. Assume <math>\mu a \ll 1</math>, and give your answer correct to order | With a trial wave function of your own devising, estimate the binding energy of a "hydrogen" atom with this potential. Assume <math>\mu a \ll 1</math>, where <math>a = \frac{4\pi\epsilon_{0}\hbar^{2}}{me_{2}}</math>, and give your answer correct to order <math>(\mu a)^{2}</math> | ||
<math>(\mu a)^{2}</math> | |||
Solution: | |||
The simplest trial function looks exactly like the hydrogen atom ground wavefunction, but with <math>a</math> changed to <math>b</math>. <math>(\psi = \frac{1}{\sqrt{\pi b^{3}}}e^{-r/b}.</math>. <math>b</math> acts as a variational parameter. | |||
The hydrogen atom Hamiltonian is <math>\mathcal H = \frac{-\hbar^{2}}{2m} - \frac{e^{2}}{4\pi \epsilon_{0}} \frac{1}{r} = T+V</math> | |||
For hydrogen atom with standard Coulomb potential (massless photons), we have <math>\langle T\rangle = \langle V\rangle,</math> with <math>\langle T\rangle = -E_{1}\frac{\hbar^{2}}{2ma^2}</math> | |||
For the Yukawa potential, <math>\langle T\rangle =\frac{\hbar^{2}}{2mb^2} </math> and | |||
<math>V = \frac{-e^2}{4\pi \epsilon_{0}}\frac{1}{\pi b^{3}} \int_{0}^{\infty}\frac{e^{-2r/b} e^{-\mu r}}{r} r^{2}dr d\Omega = \frac{-e^2}{4\pi \epsilon_{0}}\frac{4}{b^{3}} \int_{0}^{\infty}e^{-(\mu + 2/b)r} r dr = \frac{-e^2}{4\pi \epsilon_{0}}\frac{4}{b^{3}}\frac{1}{(\mu+2/b)^2} = \frac{-e^2}{4\pi \epsilon_{0}}\frac{1}{b(1+\mu b/2)^2}</math> | |||
Or,<math>\mathcal H = \langle T\rangle + \langle V \rangle = \frac{\hbar^{2}}{2mb^2} - \frac{-e^2}{4\pi \epsilon_{0}}\frac{1}{b(1+\mu b/2)^2}</math> | |||
<math>\frac{\partial \mathcal H}{\partial b} = 0 = \frac{\hbar^{2}}{mb^{3}} + \frac{-e^2}{4\pi \epsilon_{0}}\left [\frac{1}{b(1 + \mu b/2)^{2}} + \frac{\mu}{b(1+\mu b/2)^{3}} \right ] = frac{\hbar^{2}}{mb^{3}} + \frac{-e^2}{4\pi \epsilon_{0}b^{2}}\left [\frac{1 + 3\mu b/2)}{(1 + \mu b/2)^3} \right ]</math> | |||
Or, <math>frac{4\pi\epsilon_{0}\hbar^{2}}{me_{2}} = b\frac{1 + 3\mu b/2)}{(1 + \mu b/2)^3}</math> | |||
Or, <math>b\frac{1 + 3\mu b/2)}{(1 + \mu b/2)^3} = a</math> | |||
Now since <math>\mu a \ll 1, <math>\mu b \ll 1</math></math>. So | |||
<math>b(1 + 3\mu b/2)\left [1 - \frac{3\mu b}{2} + 6 \frac{\mu^{2} b^{2}}{4} \right ] \approx a</math> | |||
Or, <math>a \approx = b\left [ 1-3(\mu b)^{2}/4 \right ]</math> | |||
In the second order term, we can replace <math>b</math> by <math>a</math> So | |||
<math>b \approx a\left [1+3(\mu a)^{2}/4 \right ]</math> | |||
With this optimized value of <math>b</math>, we can find out <math>\langle \mathcal H\rangle</math> | |||
<math>\langle \mathcal H\rangle = \frac{\hbar^{2}}{2ma^{2}\left [1+3(\mu a)^{2}/4 \right ]} - \frac{e^2}{4\pi \epsilon_{0}}\frac{1}{a\left [1+3(\mu a)^{2}/4 \right ]\left [1+\mu a/2 \right ]^2}</math> where we have approximated <math>b</math> by <math>a</math> in the last bracketed term in the denominator. | |||
Or,<math>\langle \mathcal H\rangle = \frac{\hbar^{2}}{2ma^2} \left [1-6(\mu a)^{2}/4 \right ] - \frac{-e^2}{4\pi \epsilon_{0}a}\left [1-3(\mu a)^{2}/4 \right ]\left [1-2(\mu a)/2 +3(\mu a/2)^{2} \right ] | |||
= -E_{1}\left [1-3(\mu a)^{2}/2 \right ] +2E_{1}\left [1 -\mu a - \frac{3}{4}(\mu a)^2 + \frac{3}{4}(\mu a)^2 \right ]</math> | |||
Or, <math>\langle \mathcal H\rangle = E_{1}\left [1-2\mu a +\frac{3}{2}(\mu a)^{2} \right ]</math> |
Latest revision as of 22:14, 30 April 2010
(Introduction to Quantum Mechanics, Griffiths, 2e)Problem 7.14
If the photon has a nonzero mass , the Coulomb potential would be rep[laced by the Yukawa potential, where . With a trial wave function of your own devising, estimate the binding energy of a "hydrogen" atom with this potential. Assume , where , and give your answer correct to order
Solution:
The simplest trial function looks exactly like the hydrogen atom ground wavefunction, but with changed to . . acts as a variational parameter. The hydrogen atom Hamiltonian is
For hydrogen atom with standard Coulomb potential (massless photons), we have with
For the Yukawa potential, and
Or,
Or, Or, Now since </math>. So
Or,
In the second order term, we can replace by So
With this optimized value of , we can find out
where we have approximated by in the last bracketed term in the denominator.
Or, Or,