Additional Problems For Set 1: Difference between revisions

From PhyWiki
Jump to navigation Jump to search
(New page: \emph{Problem } Estimate the Bohr radius of the H-atom using the uncertainty principle between momentum and position. Use the radial variables. \emph{Solution} The Energy for the hydrog...)
 
(Replacing page with 'emph{Problem }')
Line 1: Line 1:
\emph{Problem }
emph{Problem }
 
Estimate the Bohr radius of the H-atom using the uncertainty principle
between momentum and position. Use the radial variables.
 
\emph{Solution}
 
The Energy for the hydrogen atom is described by:
 
$E=\frac{P^{2}}{2m}-\frac{e^{2}}{r}$
 
$\Delta r$ Is defined as the average radius of localization for the
electron.
 
The Uncertainty Principle can be generalized as:
 
$\Delta r\cdot\Delta p\backsimeq\hbar$
 
The momentum corresponding to$\Delta r$can be generalized as:
 
$p\backsimeq\Delta p\backsimeq\frac{\hbar}{\Delta r}$
 
Leaving a kinetic energy of:
 
$KE=\frac{P^{2}}{2m}\backsimeq\frac{\hbar^{2}}{2m(\Delta r)^{2}}$
 
The potential is defined as:
 
$V\backsimeq-\frac{e^{2}}{\Delta r}$
 
Giving the total energy:
 
$E\sim\frac{\hbar^{2}}{2m(\Delta r)^{2}}-\frac{e^{2}}{\Delta r}$
 
The minimum for $\triangle r$ can be found by differentiating the
total energy with respect to $\triangle r$.
 
$\frac{\partial E}{\triangle r}=0\backsim\frac{-\hbar^{2}}{m(\bigtriangleup r)^{3}}+\frac{e^{2}}{(\triangle r)^{2}}$
 
Solve for $\triangle r$:
 
$\frac{\hbar^{2}}{m(\bigtriangleup r)^{3}}\thicksim\frac{e^{2}}{(\Delta r)^{2}}$
 
$\triangle r\thicksim\frac{\hbar^{2}}{me^{2}}$
 
This corresponds to the bohr radius given by
 
$r_{bohr}=k\frac{\hbar^{2}}{m_{e}e^{2}}$
 
$k=4\pi\varepsilon_{0}$

Revision as of 16:47, 22 January 2011

emph{Problem }